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Chapter 1

Introduction

Materials are key to new technologies. Technologies are limited by materials, so for new technologies

to develop it is essential to modify known materials in order to improve their properties and to discover,

or even design, new materials with specific properties. Compounds like oxides, iodides, sulphides etc

which show phenomena like colossal magneto resistance (CMR), high Tc super-conductivity, multi-

ferroicity etc, are under investigation as they promise to be candidates for technological advancement.

The knowledge of material characteristics allows the designer not only to make the best material selec-

tion for the application in a given device, but also to overcome its limits and constraints in a design.

Therefore it is necessary to have microscopic understanding of these materials, to provide insights to

the underlying complicated physical and chemical processes.

The chemistry controls the physical properties (e.g. electrical, magnetic, and optical properties) of

materials. At the root of all these properties are the electrons. Study of electronic structure of such novel

materials therefore form an active area of modern condensed matter research. However, such materials

are usually complex in structure and in behaviour, containing several atoms in the unit cell involving

several different degrees of freedom. As a result, modelling of such complex materials plays an ever

increasing role in study of physical properties of those compounds. In this thesis, we have investigated

and understood the complex behaviour of some of these compounds in terms suitable modelling, start-

1



1.1 Crystal Structure of Spinel Compounds 2

ing from first-principles electronic structure calculations, in general.

We have considered a particular class of materials, called spinel compounds and have studied it’s ex-

citing and intriguing physical properties. The spinel compounds have general formula AB2X4, where

A and B can be transition metal elements and X represents mainly oxygen or sulphur. Transition-metal

spinels have been, for many years, the subject of intense experimental and theoretical study[1, 2].

Spinel is an ancient name that originally referred to red gemstones, which is magnesium aluminium

oxide, MgAl2O4. The name spinel is derive from the Latin word spina meaning "little thorn". In ancient

Greece, Magnetite (Fe3O4), the naturally occurring magnet which is a spinel mineral was first found.

Magnetite is probably the most important mineral, from a historical perspective, ever to be discovered.

In ancient times it was known as lodestone. In 1915 Sir Bragg, characterized structure of spinel[3].

In the last century there were many spinel compounds discovered showing different interesting prop-

erties. The famous Verway transition was found in Fe3O4 [4]. LiTi2O4, the first oxide superconductor

discovered[5], is a member of spinel family. LiV2O4 is a another famous member of spinel family,

which show heavy-fermion behaviour without having any f -electron states [6]. We shall discuss some

of these famous spinel compounds briefly later in this chapter. Table 1.1 illustrates few examples from

the vast variety of spinel compounds.

.

1.1 Crystal Structure of Spinel Compounds

Spinel compounds have general formula AB2X4. There are two types of metal sites in the structure,

with tetrahedral and octahedral coordination, the later being double in number than the former. From

structural point of view, spinel compounds can broadly be classified into two classes, normal spinel

and inverse spinel. In a typical normal spinel compound, like manganese vanadate (MnV2O4), the A

cation (in this case Mn2+) occupies the tetrahedral site and the B cation (in this case, V3+) occupies

the octahedral site. In inverse spinel (if not stated, we mean normal spinel as spinel), such as magnetite

(Fe3+Fe2.5+
2 O4), the tetrahedral site is occupied by B-type cations (Fe2.5+), while the octahedral site is
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compound common name and characteristic

MgAl2O4 Spinel, natural gemstones

ZnAl2O4 Gahnite, a transparent diamagnetic spinel

FeAl2O4 Hercynite, a classical paramagnet

gamma-Fe2O3 Maghemite, a natural material for magnetic recording

Fe3O4 Magnetite, naturally occurring magnet (lodestone)

Mn3O4 Hausmannite, a natural tetragonal spinel

Fe3S4 Greigite, a ferrimagnetic semimetal

NiFe2O4 Trevorite, a ferrimagnetic semiconductor

ZnFe2O4 Franklinite, the paramagnetic ferrite

Fe2TiO4 Ulvùspinel, with giant magnetostrictive properties

Mg2SiO4 The high-pressure spinel polymorph of forsterite (olivine), which

forms constituent of the earth’s inner mantle

Table 1.1 Examples of few spinel compounds along with their commonly known name and
characteristics. This table is taken from J. Am. Ceram. Soc., 82[12], 3277-3278 (1999). Also
can be found at http://www.ruby-sapphire.com/spinel.htm

shared between A(Fe3+) and B cations. In the present thesis all the five spinel compounds studied are

of normal type.

The space group of ideal cubic spinel structure is Fd3̄m, with A and B-site ions occupying high-

symmetry postilion and X-site ion position is a free parameter (u, u, u). Thus, for the cubic spinel

structure, there is only one free structural parameter other than the lattice constant. Variation of this

parameter changes the relative sizes of the tetrahedra and octahedra without changing the crystal sym-

metry and also introduces distortion within individual octahedron and tetrahedron. In Fd3̄m space

group, description of ion position is dependent on the choice of setting for the origin. The possible

choices for the unit-cell origin are either of two different equivalent points with point symmetries 4̄3m

For a detail description of spinel structure one may refer to J. Am. Ceram. Soc., 82[12], 3279-3292 (1999)
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Figure 1.1 Right hand panel shows crystal structure of spinel compound. A and B sites are
represented by grey and blue balls, while the small red balls indicate position of X anion. The
B cations form the pyrochlore sub-lattice, shown by violate bonds. In the right hand panel,
tetrahedral and octahedral units are shown separately.

and 3̄m. Moreover, the origin can be assigned to either a vacant site or an occupied lattice site. Table

1.2 lists the wyckoff notation of A, B and X site ions positions for different possible choice of origin.

Origin at 4̄3m Origin at 3̄m

Origin at A site Origin at tetrahe-

dral vacancy

Origin at B site Origin at octahe-

dral vacancy

A-site cation 8a 8b 8b 8a

B-site cation 16d 16c 16c 16d

X-site anion 32e 32e 32e 32e

Table 1.2 Wyckoff notation of A, B and X site ions positions for different possible choice of
origin for ideal cubic unit cell of spinel

In Fig. 1.1 we show crystal structure of a typical spinel compound. Primitive unit cell of spinel

structure in this space group consists of two formula units (z = 2). There are two, four and eight

equivalent positions of A, B and X site ions respectively. Table 1.3 lists those positions, considering

origin at a lattice site occupied by A site ion with 4̄3m point symmetry. The spinel structure can
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Site Multiplicity
Wyckoff

letter
Site Symmetry Coordinates

A 8 a 4̄3m (0, 0, 0) (3/4, 1/4, 3/4)

B 16 d 3̄m
(5/8, 5/8, 5/8) (3/8, 7/8, 1/8) (7/8, 1/8, 3/8)

(1/8, 3/8, 7/8)

X 32 e 3m

(u, u, u) (-u, -u+1/2, u+1/2) (-u+1/2, u+1/2,-

u) (u+1/2,-u,-u+1/2) (u+3/4, u+1/4, -u+3/4) (-

u+1/4, -u+1/4, -u+1/4) (u+1/4, -u+3/4, u+3/4)

(-u+3/4, u+3/4, u+1/4)

Table 1.3 The atomic positions of AB2X4 in Fd3̄m symmetry, having origin at a lattice site
occupied by A site ion with 4̄3m point symmetry

overall be described as three dimensional network of A-site-centered tetrahedra and B-site-centered

octahedra. B-site only sub-lattice (shown by violet bonds in Fig. 1.1) forms the pyrochlore lattice,

a three-dimensional network of corner shared tetrahedra. Through any one of the B-site ions, three

different chains of tetrahedra run in three dimension. Projection of B-site only sub-lattice on to either

of crystallographic planes gives rise to checker-board pattern. If this sub-lattice is projected on a plane

normal to any of the three chain directions, projected lattice resembles the Kagome lattice. A-site only

sub-lattice looks similar to that of diamond lattice (ZnS structure), which is a inter penetrating face

center cubic (FCC) structure. Fig. 1.3 shows the A-site only sub-lattice of a spinel structure.

Within cubic phase, spinel compounds can also posses a non-centrosymmetric space group like

F4̄3m. A well studied such spinel compound is MgAl2O4, which remains in F4̄3m symmetry [7, 8].

Off-center displacement of B-site ion in this space group is allowed, which is not present in usual

Fd3̄m space group. In this present thesis we have studied a sulphide spinel, FeCr2S4, whose space

group is debated due to the possible displacement of Cr (B-site ion) and S ions. In chapter 4, we have

discussed in detail the possible connections between the two space groups Fd3̄m and F4̄3m. Other

than cubic, spinel can also have tetragonal and orthorhombic variant. For example MnV2O4, ZnV2O4,
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a

b

c

(a) (b)

(c) (d)

Figure 1.2 Different projection of B-site only sub-lattice of spinel structure. a) B tetrahedra
forming pyrochlore lattice. Three arrows indicates the three chain directions. b) B4X4 build-
ing blocks inside the conventional unit cell of spinel compound. A site ions are not shown
for clarity. The colour convention is same as Fig. 1.1. c) Projection of B-site sub-lattice on
normal plane of any of the chain directions, forming Kagome lattice. d) Projection of B-site
sub-lattice on any of the crystallographic planes, showing checker-board pattern.

CoMn2O4 exists in tetragonal structure. Many cubic spinel compounds undergo structural transitions

on gradual lowering of temperature, form cubic to tetragonal to orthorhombic phase. ZnV2O4 shows

similar structural transitions [9]. In the present thesis we have studied a spinel compound FeV2O4,

which also undergoes similar structural transition on lowering of temperature[10]. Even few spinel

compounds exist in monoclinic symmetry, for example Li2CrCl4. The corresponding space group is

C2/c [11] Also this particular compound is a chloride spinel, usually we have oxide or sulphide spinel

compounds.
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Figure 1.3 A-site only sub-lattice of a spinel compound, showing diamond lattice. B cations
and X anions are not shown inside the conventional unit cell of for better visibility.

1.2 Few Important Spinel Compounds

Fe3O4 : Among the famous spinel compounds, the first candidate that comes to the list is Magnetite,

Fe3O4. Starting from ancient times, it is known as naturally occurring magnet, named as lodestone. In

1915, Sir Bragg determined spinel crystal structure by doing x-ray diffraction on this particular com-

pound, along with MgAl2O4. In 1939 the famous Verwey transition was discovered in this compound.

When heated up to a temperature ∼ 122K, this compound exhibits more than order of magnitude in-

crease in conductivity, accompanied by structural transition. This threshold temperature is known as

Verwey transition temperature after name of it’s discoverer[4]. There has been numerous attempts in

last seventy years or so, to have a definite model that can explain the behaviour of the system blow the

transition temperature. Still this is a subject of active research, which is yet to be understood unam-

biguously. Apart from Fe3O4, in Ti4O7 and Eu3Si4 [12] charge order-disorder transitions of Verwey

type take place.

LiV2O4 : Heavy fermion behaviours are usually found in Ce and U based rare earth compounds that

have two different types of electrons near Fermi level (EF ), one is localized f -electrons and other one is
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conduction electrons. LiV2O4, spinel compound shows heavy fermion behaviour which is very surpris-

ing since the system has only d-electrons near EF [6]. In LiV2O4, B-site ion is V3.5+ which is magnetic

in nature. As discussed in the previous section, they form a network of corner-sharing tetrahedra, which

is a frustrating lattice for antiferromagnetic nearest neighbour interactions. The topology of the lattice

prohibits antiferromagnetically aligned spins from ordering and induces macroscopic degeneracy in the

ground state. Such kind of macroscopic ground state degeneracy leads to a large enhancement of spin

fluctuations at low temperature and heavy-mass quasiparticles.

LiTi2O4 : In the field of superconductivity, spinel compounds are also known, although the are

not many spinel superconductor in numbers. There are four spinel compounds which are reported as

superconductors. These spinel compounds are CuV2S4 (Tc = 4.45 K) [13], CuRh2S4 (Tc = 4.8 K)

[13], CuRh2Se4 (Tc = 4.39 K) [13, 14] and LiTi2O4 (Tc = 11.2 K) [15]. Superconductivity in LiTi2O4

was first reported by Johnston et al.[15] in 1973, more than a decade before the discovery of high-

Tc cuprate superconductors [16]. The mechanisms underlying the superconductivity of LiTi2O4 are

yet not resolved properly. Experimental studies on measurement of superconducting energy gap [16]

have shown that LiTi2O4 is a weak coupling, d-band superconductor. Although there are experimental

studies like, specific heat value measurements [17, 18], EXAFS Ti K-edge measurements [19], NMR

experiments [20] which suggested that LiTi2O4 is a correlated d-electron metal. Muon spin relaxation

experiments [21] reported that the superconducting condensation mechanism in this system differs from

usual mechanism in simple metal BCS superconductors. In literature LiTi2O4 has been included to the

family of so-called “exotic” superconductors [22, 23, 24].

LiMn2O4 : Now a days in consumer electronics Lithium-ion batteries are used a lot as rechargeable

batteries. Popularity of these type of batteries has increased because of their non-toxicity, slow loss of

charge, and no memory effects. LiMn2O4, a spinel compound is commonly used as the cathode for

Li-ion batteries. This spinel compound exhibits a high capacitance which means it has the ability to

store charge [25]. At the same time, possibility of Li1+ to be reinserted into its parent structure by a

reverse electrochemical potential gives rise to the rechargeable capability of the battery [26].
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CoFe2O4 : CoFe2O4 is another member of inverse spinel family, which has recently been studied

as a component for ferrofluids. Ferrofluids are colloidal suspensions of ferromagnetic nano-particles.

Depending on their size, these nao-particles exhibits different magnetic properties, such as superpara-

magnetism. On application of an alternating magnetic field to the superparamagnetic particles, they

undergo thermal fluctuations as the spins overcome their blocking energy barrier and flip with the al-

ternating magnetic field [27]. The ability to produce heat from the thermal fluctuations makes colloidal

suspensions of this particular spinel compound a good candidate for hyperthermia based cancer treat-

ments. CoFe2O4 nano-particles are directed towards the cancerous area and temperature of the particles

are raised by applying magnetic field. This in turn cook the cancerous tissue enough to lower its resis-

tance to chemotherapy [28].

This section lists a few of the very known and well studied spinel compounds from the vast list of com-

pounds. Many of them are yet not well understood, and makes them a topic of active research till now.

Some of them have been implemented in smart devices which are very essential in our daily also. This

unarguably defines the wide range of importance of spinel compound in modern days research activity.

1.3 First-Principles Studies on Spinel Compound

As discussed in the previous section, the spinel family contains many known compounds, and they

show a wide spectrum of interesting properties, which makes this class of compound a familiar topic

of active research for the last few decades. In this section we shall briefly discuss the works done using

first-principles method on spinel compounds. As mentioned already which forms also the method

for study in the present thesis. For a cubic spinel, which is the most usual form spinel compounds,

there are only two free parameters in terms of it’s structural aspect, lattice parameter and position

of X anion (u parameter). Many first-principles calculations have been done on spinel compounds

to determine theoretically these two parameters. In such studies the agreement between theoretically

optimized value and the experimental values is good. In general, although sometimes calculations done

within local-density approximation (LDA) show tendency of underestimating the lattice parameter and
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calculations done within generalized gradient approximation (GGA) show tendency of overestimating

the same. A detail information of such type of calculations on cubic spinels like ZnGa2O4, ZnAl2O4,

ZnFe2O4, MnFe2O4 and LiMn2O4 can be found in Table 1 of Ref. [2]. At the beginning of this chapter

we have discussed that spinel compounds can be classified into two major classes from structural point

of view, normal spinel and inverse one. Stability between the normal and inverse phase of a spinel

compound has also been studied by carrying out total-energy calculations [29]. Theoretically predicted

results agree well with the experimentally reported ones.

The microscopic origin of metallic or insulating ground state of spinel compounds, especially for

transition-metal spinels have been studied extensively. In addition to this magnetic interactions and

ordering have also been investigated by first-principle calculations. For example, ZnFe2O4 has been

found to be an insulator from the calculation done within GGA and with antiferromagnetic (AFM)

spin ordering at B site ion[30]. Small-gap insulating solution has been found for a very similar spinel

compound MnFe2O4[31]. Band gap value of 0.98 eV has been computed for NiFe2O4, and half-

metallic solution has been found for another ferrites spinel CoFe2O4[29].

Magnetic exchange interactions in spinel compounds have been studied extensively using first-

principles calculations. Usually the B site ion in AB2X4 is of magnetic in nature, although there

are many spinel compounds with magnetic ions at only A site or at both A and B site. If there were

only magnetic ions on B sites with only nearest-neighbour AFM coupling, then the magnetic ordering

would be dominated by frustration. This is simply because the B-only sub-lattice of spinel structure

forms pyrochlore lattice. In real materials, the further-neighbour interactions can be however quite

dominant in determining the magnetic ordering. Table 2 of Ref.[2] lists theoretically computed mag-

netic exchange interactions J in many spinel compounds with magnetic ions at B site only. There are

examples of spinel compounds with magnetic ions both at A and B sites, for such spinel compounds

the magnetic ordering pattern becomes more complicated. For example, such a spinel compound is

MnFe2O4, where Mn2+ and Fe3+ both have d5 configuration. Magnetic exchange interactions of this

spinel has been computed via first-principles calculations[32] and that matches well with experimental
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results. Substitution of a magnetic cation into a nonmagnetic spinel compound has been suggested as

a one of the routes to obtain novel magnetic semiconductors[33]. Cation ordering as well as magnetic

interactions of ZnFe2O4 and CdFe2O4 were investigated from first principles calculations[34] by com-

puting total energies of those systems.

It has been seen that spin-lattice coupling can play an important role in magnetic spinel systems.

Magnetocrystalline anisotropy energy was computed for compounds like Fe3O4[35], NiFe2O4[36] and

CoFe2O4[37]. The dependence of the anisotropy on epitaxial strain is also computed from first princi-

ples for these above mentioned compounds.

Due to the structural complexities of the spinel structure, the first principles study of phonon frequen-

cies, structural instabilities and structural phase transitions as a function of temperature and pressure

forms a active field of research. Phonon calculations have been done on ZnAl2O4 and ZnGa2O4 sys-

tems, and a fair agreement with experimental Raman and infrared determinations has been found[38].

LiMn2O4 is a very known spinel compound, commonly used as the cathode for Li-ion batteries. Raman

and infrared-active phonon frequencies of this compound were computed from first principles[39] and

found to be in good agreement with experiment.

Pressure dependence of structural parameters and prediction of structural transitions with pressure has

been addressed quite a few times in literature for spinel compounds. The pressure dependence of lattice

parameter and positional parameter u for spinel compounds ZnAl2O4 and ZnGa2O4 are studied via first

principles calculations[38].

These examples establish the validity of first-principles approaches in studying spinel compounds

which are complex in their geometrical constructions as well as in behaviour.

1.4 Motivation and Overview of Present Thesis

It is very much evident from several examples presented in the previous section that first principles

calculations on spinel compounds has been greatly advanced, in terms of making accurate predictions.

Needless to say that the impressive improvements in computational techniques and computer resources
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helped to reach at this point. First principle calculations helped to understand the structure and many

intriguing properties of these compounds, which at a glance seems to be very complex with many

degrees of freedom, but still there are many more open questions and issues to be understood. The

understanding at the microscopic level opens avenues for the design of new materials. A better under-

standing of the interplay between the different ordering like magnetic, charge and orbital degrees of

freedom will lead to the identification of materials with desirable functional properties . Parallel to this,

first principles calculations can make more precise connection between the real system and the sim-

plified model to understand the underlying physics[41] leading to conceptual advances and a stronger

interaction between theory and experiment.

In this present thesis we have studied five different spinel compounds namely, MnV2O4, FeCr2S4,

FeSc2S4, CuIr2S4 and FeV2O4. First principles calculations have been done on these compounds to

understand from microscopic point of view the exciting properties exhibited by them. The contents of

the various chapters discussed in the present thesis are as follows :

Chapter 2 : The First principles calculations carried out, are based on Density Functional Theory

(DFT). In this chapter, we have discussed the theoretical background of the DFT and applying the

same, how in practice one can solve a many electron Hamiltonian is discussed in nut-shell. We

have discussed the different basis sets which we have considered during the course of calculation,

depending upon the properties we have studied. We have also discussed the construction of low

energy model Hamiltonian of such complex materials starting from a first-principles calculations.

Chapter 3 : We have proposed a possible orbital ordering in spinel compound MnV2O4 which

consists of orbital chains running along crystallographic a and b directions with orbitals rotated

alternatively by about 45◦ within each chain, in this chapter. For a correct description of the

space group symmetry from theoretical calculation, consideration of correlation effects sometime

becomes crucial. This has been discussed in detail in context of determination of low temperature

crystal structure symmetry of MnV2O4. This implies that the correlation-driven orbital ordering

has a strong influence on the structural transitions in this system. Our proposed orbital ordering
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favours a noncollinear magnetic spin arrangement of V ions, which is found to be in agreement

with the experimental results. In addition to this V-V exchange interactions have been studied

theoretically.

Chapter 4 : Experimentally it has been found that low temperature of phase of FeCr2S4 spinel is

an insulator, although simple electron count in this compound predicts it to be a half-metal. Our

calculations provide a microscopic understanding of the origin of the insulating behaviour of this

compound. The insulating state is found to be driven by Coulomb enhanced spin-orbit coupling

operative within the Fe-d manifold. There is a controversy regarding the structural distortion at

low temperature structure of FeCr2S4. We have investigated from theoretical point of view, the

possibility of the structural distortions. We have further compared the calculated optical property

data with that of the experimental one.

Chapter 5 : In this chapter we presented a comparative study of two very similar Fe-based

spinel compounds, FeCr2S4 and FeSc2S4. Though both systems contain an orbitally active A

site with an Fe2+ ion, their properties are rather dissimilar. We have carried out first principles

calculations to find out the microscopic origin of their distinct behaviour. Our calculations reveals

that root cause behind this dissimilar behaviour of two spinel compounds is the differences in

hybridization of Fe d states with Cr/Sc d states and S p states in the two cases. This leads to the

differences in the nature of the magnetic exchanges of these two spinel compounds. The nearest

neighbour versus next-nearest neighbour exchange parameter ratios in those two compounds as

well as the magnitude and signs of magnetic interactions are found to be very different in the

two compounds. This results into significant frustration effects in FeSc2S4 which are absent in

FeCr2S4.

Chapter 6 : This chapter describes the theoretically computed electronic and optical properties of

spinel compound CuIr2S4. This compound undergoes a structural phase transition, accompanied

by a metal-insulator transition (MIT) at a temperature of about 230 K. The nature of this MIT has

been discussed in the literature in terms of both the correlated singlet formation picture as well as
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the orbitally driven Peierls transition picture [42]. Our first principles study finds that correlation

has little effect on this compound. Theoretically computed reflectivity and conductivity data for

both the high-temperature and low-temperature phases are found to be in good agreement with

the experimental results reported.

Chapter 7 : In this chapter we have discussed about FeV2O4, a spinel with orbital degrees of

freedom both at Fe and V sites that exhibits two tetragonal phases, one compressed at high

temperature and another elongated at low temperature. Our first principles calculations reveal

that orbital ordering at Fe sites at the high and low temperature phases there are ferro-orbital

ordering of x2 − y2 and 3z2 − 1 types, respectively. The orbital ordering at V sites is found

to consist of orbital chains running along different directions with orbitals rotated alternatively

within each chain. This is very similar to the case of MnV2O4, which is discussed in chapter

3. We have also found that the single-ion anisotropy effect with hard and easy c axis favors the

compressed and elongated tetrahedral shapes driving the two different orbital ordering patterns at

Fe site at high and low temperatures. This gives rise to magnetocrystalline anisotropy-dependent

shapes.

Chapter 8 : This chapter deals with summery of the results of study on five different spinel

compounds at one place.Also we have discussed the possibilities of future work.

Crystal structures shown in this chapter and in all the subsequent chapters are produced using either of two software

packages, VESTA [43] or XCrysDEN [44].
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Chapter 2

Theoretical background of electronic

structure calculations

2.1 Density Functional Theory (DFT) way of solving quantum many

body problem

2.1.1 The many-electron Hamiltonian

Any material can be thought of as a collection of positively charged particles (nuclei) and negatively

charged particles (electrons). If we have Nn nuclei surrounded by Ne electrons, then essentially we are

dealing with a many-body problem. The full many-particle Hamiltonian for such system can be written

as

H =− h̄2

2me

Ne

∑
i=1
52

ri
− h̄2

2MI
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∑
I=1
52

RI
− 1

4πε0
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+

1
4πε0

∑
i> j

e2

|ri− rj|
+

1
4πε0

∑
I>J

ZIZJe2

|RI−RJ|
(2.1)

where, in the above equation, the mass of the nucleus at RI is MI . The electron has mass me and

the corresponding position is denoted by ri. The first term of Eq.(2.1) is the kinetic energy operator

for the electrons while the second one is for the nuclei. The last three terms describe the Coulomb in-

teraction between electrons and nuclei, between electrons and other electrons, and between nuclei and

19
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other nuclei respectively. Exact diagonalization of this kind of Hamiltonian is a very difficult because

of large degrees of freedom that are involved. In order to find acceptable solutions, one needs to make

approximations at different levels.

The first step towards the simplification of the above equation is the Born-Oppenheimer (B-O) approx-

imation(1927)[1]. The nuclei are much heavier and therefore much slower than the electrons. We can

hence consider nuclei to be “static” at “fixed” positions and assume the electrons to be in instantaneous

equilibrium with them. Following this approximation, the kinetic energy of ions can be neglected and

the ion-ion interaction (last term in Eq.(2.1)) is assumed to be constant. The constant term, called

Madelung energy, is calculated classically. So under B-O approximation, the many-body Hamiltonian

for a system of N (since from now we shall deal with only electrons so Ne is changed to N) interacting

electrons moving in the field of fixed ion cores, takes the form

H =−
N

∑
i=1

h̄2

2me
52

ri
− 1

4πε0
∑
i,I

ZIe2

|RI− ri|
+

1
2

1
4πε0

∑
i, j

e2

|ri− rj|
(2.2)

Even after this simplification, it represents a very complicated many-electron eigen value problem

and further approximation is needed to solve it. Efforts have been put, therefore, to develop an effective

single-particle picture, in which the system of interacting electrons can be mapped onto a system of

non-interacting quantum mechanical particles that approximates the behaviour of original system. Two

distinct approaches have been put forward in this direction: wave function based approach and density

functional theory based approaches.

2.1.2 Wave function based approach

Hartree in 1928 first expressed the many-body wave function as a product of single-electron functions

{φi (ri)} as ψH(r1,r2 . . . ,rN) = φ1(r1)φ2(r2) . . .φN(rN) and solved, numerically, the equation for each

electron moving in a central potential due to other electrons and the nucleus [2]. This simplest ap-

proximation can only take into account the electron-electron Coulomb repulsion in a mean-field way,

neglecting the exchange and correlation properties completely. The next level of sophistication was

then introduced by Fock in 1930 [3], incorporating the anti-symmetric character of electronic wave
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function in terms of Slater determinant

ψ
HF =

1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 (r1) φ1 (r2) · · · φ1 (rN)

φ2 (r1) φ2 (r2) · · · φ2 (rN)
...

...
. . .

...

φN (r1) φN (r2) · · · φN (rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.3)

Application of the variational principle shows that such one-electron wave functions satisfy the Hartree-

Fock (H-F) equations like

[
− h̄2

2me
∇

2
ri

+Vion (ri)+V H (ri)+V X
]

φi (ri) = εiφi (ri) (2.4)

with

V H (ri) = e2
occ

∑
j

∫ ∣∣φ j
(
rj
)∣∣2∣∣ri− rj
∣∣ drj (2.5)

as the Hartree potential and the exchange potential is given by

V X
i φi (ri) =−

occ

∑
j

φ j (ri)
∫

φ
∗
j
(
rj
) e2∣∣ri− rj

∣∣φi
(
rj
)

drj (2.6)

The exchange term VX is difficult to derive in practice because it is non-local and related to the in-

teraction between all electrons in the system. Consequently, the Hartree-Fork approach has a highly

computational cost and is therefore restricted to small systems. In spite of the importance and achieve-

ments of the Hartree-Fock approximation, corrections beyond it are often considered due to the fact

that a single determinantal state, even with the best possible orbitals, remains in general a rather poor

representation of the complicated ground state wave function of a many-body system. Therefore, meth-

ods like configuration interaction (CI) approach have been developed by quantum chemists [4], which

consider a linear combination of different determinantal states to improve the situation. However, such

approach becomes quickly computationally prohibitive as the system size grows.

2.1.3 Density functional theory

In 1964, Hohenberg and Kohn proposed the Density Functional Theory (DFT) [5] to deal with many-

electron problems more efficiently. In DFT one ignores the precise details of the many-electron wave
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function ψ (r1,r2, . . . ,rN) and considers the density of electrons in the system

ρ (r) = N
∫

ψ
∗ (r,r2, . . . ,rN)ψ (r,r2, · · · ,rN)dr2dr3 . . .drN

as the basic variable. The main result of DFT is that the ground state properties of a many electron

system are uniquely determined by its electron density distribution. In other words, all ground state

properties of the many electron system are functional of its ground state electron density distribution.

When the ground state electron density distribution of the many electron system is determined, its ex-

ternal potential is also uniquely determined.

2.1.3.1 Basic theorems of DFT and Kohn-Sham equation

Density functional theorem can be expressed in terms of two basic theorems:

Theorem I : There is a one-to-one correspondence between the ground-state density ρ (r) of a many-

electron system and the external potential Vext . An immediate consequence is that the ground-state

expectation value of any observable Ô is a unique functional of the exact ground-state electron density:

〈
Ψ|Ô|Ψ

〉
= O [ρ]

Few steps of calculation can prove the above statement. Let us consider two N-electron systems,

characterised by two different external potentials (differing by more than an additive constant), V1(r)

and V2(r). Let us consider that corresponding two wavefunctions ψ1 and ψ2, yield the same electron

density ρ (r). One can use the variational principle and write for the energy the results:

E1 = 〈ψ1|H1|ψ1〉

< 〈ψ2|H1|ψ2〉= 〈ψ2|H2|ψ2〉+ 〈ψ1| [H1−H2] |ψ1〉

< E2 +
∫

drρ(r) [V1(r)−V2(r)]

On interchange of the suffixes, one also has the result

E2 < E1 +
∫

drρ(r) [V2(r)−V1(r)]
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Summation of the two inequalities leads to the contradiction

E1 +E2 < E2 +E1

Hence the assumption of identical density arising from two different external potentials is wrong. This

automatically follow the following:

A given ρ(r) can correspond to only one v(r)

⇓

Since V (r) is fixed, the Hamiltonian and hence the wave-function are also fixed by the density.

⇓

Since the wave-function is a functional of density, the energy functional EV [ρ] for a given external

potential V (r) is a unique functional of density.

Theorem II : For Ô being the Hamiltonian Ĥ, the ground-state total energy functional H [ρ] ≡

EVext [ρ] is of the form

EVext [ρ] =
〈
Ψ|T̂ +V̂ |Ψ

〉︸ ︷︷ ︸
FHK

+
〈
Ψ|V̂ext |Ψ

〉
(2.7)

= FHK [ρ]+
∫

ρ (r)Vext (r)dr (2.8)

where the Hohenberg-Kohn density functional FHK [ρ] is universal for any many-electron system.

EVext [ρ] reaches its minimal value (equal to the ground-state total energy) for the ground state den-

sity corresponding to Vext .

The Hohenberg-Kohn variational theorem states that if the functional EVext [ρ] is varied with respect to

ρ (r), then EVext [ρ0] takes the lowest value, corresponding to the ground state, with the correct ground

state density ρ0 (r), i.e. EVext [ρ0]≤ EVext [ρ]. The equations of Kohn and Sham, published in 1965, turn
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DFT into a practical tool [6]. We can rewrite the Hohenberg-Kohn functional in the following way :

FHK = T +V +T0−T0

= T0 +V +T −T0︸ ︷︷ ︸
VC

= T0 +VH +VC +V −VH︸ ︷︷ ︸
VX

= T0 +VH +VC +VX︸ ︷︷ ︸
EXC

Here T and V are the exact kinetic and electron-electron potential energy functionals, T0 is the func-

tional for the kinetic energy of a non-interacting electron gas, VH stands for the Hartree contribution

and VX for the exchange contribution. Here EXC is the exchange-correlation energy functional. We can

write explicitly the energy functional as following

EVext [ρ] = T0 [ρ]+VH [ρ]+EXC [ρ]+Vext [ρ] (2.9)

The above expression can also be viewed from a different perspective as the energy functional of a

non-interacting classical electron gas, subject to two external potentials. One due to the nuclei, and

other due to exchange and correlation effects. The corresponding Hamiltonian - called the Kohn-Sham

Hamiltonian is

ĤKS = T̂0 +V̂H +V̂XC +V̂ext (2.10)

= − h̄2

2me
∇

2
i +

e2

4πε0

∫
ρ (ŕ)
|r− ŕ|

dŕ+V̂XC +V̂ext

where the exchange-correlation potential is given by the functional derivative

V̂XC =
δEXC [ρ]

δρ
(2.11)

The minimization of EKS (EVext in Eq.(2.9)) is carried out subject to the constraint of normalized density∫
ρ (r)dr = N. Application of the variational principle of the Kohn-Sham theory requires that for the

ground state
δ

δρ
{EKS [ρ]−λN}= 0 (2.12)
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λ is the Lagrange multiplier. Using Eq.(2.9), one gets,

δT0 [ρ]
δρ (r)

+VKS (r) = λ (2.13)

where

VKS (r) = v(r)+VH (r)+VXC (r) = v(r)+
e2

4πε0

∫
ρ (ŕ)
|r− ŕ|

dŕ+
δEXC

δρ (r)

Kohn and Sham showed that solving Eq.(2.13) is equivalent to solving the following set of single-

particle Schrödinger-like equations for the variational wave-functions of fictitious non-interacting elec-

trons [
− h̄2

2me
∇

2 +VKS (r)
]

φi = εiφi (2.14)

where φi and εi are the single-particle wave-functions and eigenvalues, respectively, such that ρ (r) =

∑
N
i φ (r)∗ φ (r). The Eq.(2.14), therefore, represents the set of Kohn-Sham self-consistent equations.

Since VH (r) and VXC (r) depend on ρ , which depend on φi, which in turn depend on VKS (r), the prob-

lem of solving the Khon-Sham equations is not a straight-forward one. The usual way of solving such

problems is the iterative procedure, i.e. to start with an initial guess for ρ (r), calculate the correspond-

ing VKS (r), and then solve the differential equation (Eq.(2.14)) for the φi. From these one calculates a

new density, and starts again. The process is repeated until it converges. Thus the procedure is called

self-consistent cycle.

2.1.3.2 Exchange-correlation functional

The method proposed by Kohn-Sham, described above is exact, apart from the preceding Born-Oppenheimer

approximation, and the fact that exact form of exchange-correlation functional is assumed to be known.

In practice, the utility of the theory rests on the approximation used for EXC [ρ]. A widely used approx-

imation called the Local Density Approximation (LDA) is to postulate that the exchange-correlation

functional has the following form:

ELDA
XC =

∫
ρ (r)εxc (ρ (r))dr (2.15)
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Under the local density approximation, εxc (ρ) assumed to be the exchange and correlation energy

density of the homogeneous electron gas of density ρ . Within the LDA εxc (ρ) is a function of only the

local value of the density. It can be separated into exchange and correlation contributions;

εxc (ρ) = εx (ρ)+ εc (ρ)

Since the exchange energy of the homogeneous electron gas is known exactly [7, 8], εx (ρ) takes the

following form,

εx (ρ) =−3e2

4

(
3
π

)1/3

ρ (r)1/3

The functional form for the correlation energy density, εc (ρ), is unknown and has been simulated for

the homogeneous electron gas in numerical quantum Monte Carlo calculations which yield essentially

exact results[9] . The resultant exchange correlation energy has been fitted by a number of analytic

forms [10, 11, 12] all of which yield similar results in practice and are collectively referred to as LDA

functionals.

The next step towards the improvement of LDA is to include the information on how the density

ρ (r) varies spatially in the functional. The exchange correlation functional which incorporate this

improvement is known as Generalized Gradient Approximations (GGA)[13]. The general form of

exchange correlation functional considered in such case is

EGGA
XC [ρ] =

∫
f (ρ (r) ,5ρ (r))dr

Different GGAs differ in the choice of the function f (ρ,5ρ). The calculations presented in this the-

sis are mostly done using the functional proposed by Perdew, Burke and Ernzerhof in 1996, famously

known as PBE[14]. There are many other forms of GGAs available, which are being used over the

decades and new ones continue to appear[15, 16, 17, 18, 19].

In spite of quite accurate performance of LDA and different GGAs, the quest for more accurate func-

tionals goes ever on and various beyond-GGA functionals have appeared. Like hybrid functionals

which incorporate a portion of exact exchange from Hartree-Fock theory with exchange and correla-

tion from other sources (such as LDA)[20]. Few of the most popular form of hybrid functionals are

B3LYP (Becke, three-parameter, Lee-Yang-Parr) and HSE (Heyd-Scuseria-Ernzerhof)[21] etc.
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2.1.3.3 Basis sets

To solve the single-particle Kohn-Sham Eq.(2.14) and to obtain the eigenvalues and eigenfunctions,

a number of methods have been introduced. Regardless of different approachs, one has to choose an

appropriate basis set to expand the single-particle wave-functions and depending on the choice of basis

functions, different schemes, therefore, can be broadly grouped into two categories: (i) methods using

energy independent basis sets or fixed basis sets, like tight binding method using linear combination

of atomic orbitals (LCAO) type basis [22], pseudopotential method using plane wave basis [23], and

(ii) methods using energy dependent basis set, like cellular method[24], augmented plane wave (APW)

method[25] etc.

2.2 Overview of band-structure methods

In this thesis, general band-structure calculations reported are carried out using following methods in

which different basis sets are incorporated.

• We have used plane wave based basis set as implemented in Vienna ab initio simulation package

(VASP)[26, 27, 28]. The interaction between ions and electrons is described using ultra-soft

pseudopotentials (US-PP)[29, 30] or the projector augmented wave method (PAW)[31, 32].

• Full-potential linearized augmented plane-wave (LAPW)[33] + local orbitals (lo)[34] method

has also been used as when required as implemented in Wien2K[35] code.

• We have also used extensively tight binding linear muffin tin orbital (TB-LMTO)[36] method for

first principle studies.

• We have also used Nth order muffin tin orbital (NMTO) downfolding technique[37] as imple-

mented in the Stuttgart code, which goes beyond the scope of the standard TB-LMTO technique

and succeeds in extracting the relevant information needed for the modeling of a complex crys-

talline solid from a full LDA calculation.



2.2 Overview of band-structure methods 28

2.2.1 The Linear Muffin-tin Orbital Method

In order to evaluate the correct eigen states of the many electron Hamiltonian subject to real crystal

potential, in a computationally more “efficient” and at the same time less “heavy” method, the Linear

Muffin-tin Orbital (LMTO) method is a good choice. In this method muffin-tin approximation is used,

in which the actual crystal potential is approximated in the following way (see the Fig. 2.1)

position

po
te

nt
ia

l

atom core

actual
crystal
potential

approximate
potential

Figure 2.1 Schematic diagram of potential inside real crystal and approximated potential
considered in LMTO method. Potential is rapidly varying in the vicinity of core atomic
region. In the interstitial region ie. away from atom core region, the actual potential is
approximated as a constant potential.

The space inside the crystal in considered to be divided into two parts, atom-centered muffin tin

spheres and the rest region as interstitial.The potential around each atom is treated as spherically sym-

metric within a radius SR and in the interstitial region the potential is considered to be constant. Hence

the potential is of the following form,

v(~rR) =


v(rR) rR ≤ SR,~rR = |~r−~R|

−v0 rR > SR

Inside the spherically symmetric muffin tin sphere the rapidly varying part of wavefunction is rep-

resented by the radial solution of Schrödinger equation times spherical harmonics, known as partial
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waves, which is given as

φ(~rR) = ϕ(rR,ε)YL(r̂R)

Here L denotes the angular momentum labels (l,m), YL(r̂R) are the spherical harmonics functions

and r̂R are the angular variables associated with the vector ~rR. This solution is regular at ~r = ~R and

behaves like rl
R as rR→ 0. Outside the muffin-tin region the potential is assumed to be constant, and

therefore the radial equation with a constant vrR =−v0 takes the following form,[
d2

dr2
R

+
l(l +1)

r2
R
−κ

2
]

rRϕRL(rR,ε) = 0

where κ2 = ε − v0. Hence in the interstitial region the solution is plane waves, which can be ex-

panded in terms of spherical Neumann and Bessel functions. It is needless to say that, the solutions

must be continuous and smooth at the sphere boundary in order to have a “well-behaved” wavefunc-

tion. This particular method relies on atomic sphere approximation (ASA) which replaces the muffin

tin spheres by space-filling atomic spheres, called Wigner-Seitz (WS) spheres. Incorporating this ap-

proximation, the information needed to set up the Hamiltonian can be divided into two independent

parts. The first part contains the structure matrix which depends only on the structure and the positions

of the atoms and not on the type of atoms occupying the sites. The solution of the Schrödinger equation

inside each inequivalent WS sphere with appropriate boundary conditions forms the other part of the

information.

Finally following Andersen’s approach of linearization [38], the LMTO basis functions within ASA

can be expressed as:

χ
α
RL = φRL(rR)+ ∑

R′L′
φ̇

α

R′L′(rR′)hα

R′L′,RL (2.16)

where L denotes collective angular momentum index (lm). The rR is defined as ~rR =~r− ~R, where

atomic sites are given by the position vectors ~R. φ is the partial waves inside the WS sphere centered at

~R for a energy of linearization ενRL. The functions φ̇ α are the linear combinations of the φ ’s and their

energy derivatives φ̇ . The matrix hα is given by

hα = Cα − εν +(∆α)1/2 Sα (∆α)1/2 (2.17)
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where C and ∆ are the diagonal potential matrices. They depend on the potential inside the sphere, α

and on sphere radii. C and ∆ are commonly known as band center parameter and band width. S is the

structure matrix depending on the representation and the geometrical arrangement of the atomic sites.

2.2.2 Nth Order Muffin Tin Orbital (NMTO) - improved LMTO method

In order to calculate the single electron part - the orbitals, hopping integrals or on-site terms, from a

correlated Hamiltonian, one needs to extract low energy, few band Hamiltonian out of the full Hamil-

tonian. Downfolding technique is the way to achieve this. In this technique, the space of a basis set is

considered to be subdivided into two subsets, lower |l〉 and |h〉. The reduction of the full Hamiltonian H

into the lower subset Hamiltonian H̃ll is carried out in such a manner that lower l eigenvalues of H and

eigenvalues of H̃ll are same. The formation of H̃ll introduces additional energy dependence through

the expression

H̃ll = Hll−Hlh (Hhh− ε)−1 Hhl (2.18)

In LMTO method this scheme is implemented in the KKR equation, via the transformation of the

structure matrixSℵ into β representation. The additional energy dependence in taken care of by the lin-

earization procedure in construction of LMTO. Though the implementation of LMTO helps to resolve

the problem of ghost bands, but it does not rpovide an accurate way to do a massive downfolding, where

the downfolded bands span in a very narrow energy window. The disadvantages of LMTO methods are

like,

• The basis is complete to (ε− εν) (i.e. 1st order) inside the sphere while it is only complete

to (ε− εν)0 = 1 (0th order) in the interstitial, which is inconsistent. This inconsistency can be

corrected by removing the interstitial region through introduction of ASA.

• Fir open-systems non-ASA corrections (combined correction) is also included in the Hamiltonian

and in the overlap matrices, but,

– This makes the formalism computationally heavy.

– Basis must often be increased by multi-panel calculations.
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• The expansion of the Hamiltonian H in the orthogonal representation as a power series in the two

centred tight-binding Hamiltonian h :

〈χ|(H− εν) |χ〉= h−hoh+ ..... (2.19)

is obtained only within ASA and excluding downfolding.

All these shortcomings have been taken care in Nth Order Muffin Tin Orbital (NMTO) method. This

is a more consistent formalism, which overcomes the above-said shortcomings and provides a way

to describe the downfolded band structure with better accuracy within a chosen energy range. This

method treats the interstitial region accurately and goes beyond the linear approximation. It also uses

the partial waves, φRLε,rR within the atomic spheres. Instead of Neumann function, in this method

screened spherical waves (SSWs)are considered in the interstitial region. The adoptation of screening

technique is discussed briefly.

It introduces a hard sphere of radius a and a phase shifted partial wave solution φ α0
Rl (ε,rR) (green

line in Fig. ), which matches the value and slope of φ at SR, but their curvature differ. At the hard

sphere, φ α0
Rl (ε,rR) is joined continuously but with a kink to the SSW, ϕα

RL(ε,r), shown by blue line in

Fig. . The combined form of these contributions is known as Kink Partial Waves(KPWs), which is

given as

ψ
α
RL(ε,rR) =

[
φ

α
RL(ε,rR)−φ

α0
RL (ε,rR)

]
YL(r̂R)+ϕ

α
RL(ε,r)

Figure 2.2 Construction of Kink partial
wave (KPW), φ ,φ0 and ϕ .

Figure 2.3 Nth order approximation to
the energy dependence of a partial wave
for a discrete (Lagrange) mesh.
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The members of NMTO basis set χN
R′L′ is constructed by Lagrange interpolation of ψα

RL(ε,rR) eval-

uated at the energy points ε0, · · · ,εN (see Fig. ),

χ
N
R′L′ =

N

∑
n=0

∑
RL∈A

ψ
α
RL(εn,rR)L(N)

n,RL,R′L′

Thus the construction of basis set is energy selective, as well as localized in nature. The energy

selective nature of the basis set provides the way to select a narrow energy window from full LDA band

structure accurately. This procedure naturally takes into account the re-normalization effect due to the

integrated-out orbitals by defining energy-selected, effective orbitals which serve as Wannier-like or-

bitals for the few-orbital Hamiltonian in the downfolded representation. The real-space representation

of the downfolded Hamiltonian in the basis of downfolded NMTOs provide information on effective

hopping, which we have used extensively in our first-principle study.

2.2.3 The Pseudopotential Method

Electrons at the outermost shell of an atom usually take part in the chemical bonding, and there by

control chemical and physical properties of the system, while those forming the inner shells do not

participate actively. This leads to the idea behind the pseudopotential theory. Let us denote core and

valance state of single-particle Kohn-Sham equation (Eq.(2.14)) ψc and ψv respectively. A new set of

single-particle valence states φ̃ v can be defined as

ψ
v(~r) = φ̃ v +∑

c
αcψ

c(~r) (2.20)

The coeff. αcs are determined using the condition that ψc and ψv are orthogonal to each other. Using

Eq.(2.20), one can write the Eq.(2.14) in a different form:[
− h̄2

2me
∇

2 +VKS +∑
c

(εv− ε
c) |ψc〉〈ψc|

]
φ̃ v = ε

v
φ̃ v (2.21)

The operator VPS ≡ VKS + ∑
c
(εv− εc) |ψc〉〈ψc|, represents a weak attractive potential and is called a

pseudopotential. The new states φ̃ v obey a single-particle equation with a modified potential, but have

the same eigenvalues εv as the original valence state ψv. This new set of valance state experience a
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weaker potential near the atomic nucleus, but the proper ionic potential away from the core region.

Since it is this region in which the valence electrons interact to form bonds that hold the solid together,

the pseudo-wavefunctions preserve all the important physics relevant to the behaviour of the solid.

Since last few decades several successful attempts have been made to generate more accurate as well

as more efficient pseudo-potentials, keeping the basic principles same. In norm-conserving pseudopo-

tential [39] scheme, inside some core radius, the all electron (AE) wave function is replaced by a soft

nodeless pseudo (PS) wave function, subject to the condition that within the chosen core radius the

norm of the PS wave function has to be the same with the AE wave function and outside the core ra-

dius both the wave functions are identical. However, the charge distribution and moments of AE wave

function are well reproduced by the PS wave function only when the core radius is taken around the

outer most maximum of AE wave function. This in practice makes the situation for strongly localized

orbitals like 3d and rare-earth elements, complicated as the resulting pseudopotentials require a large

plane-wave basis set. This situation was remarkable improved by Vanderblit [29] by introduction of

ultra-soft pseudopotential. According to the scheme proposed by him the norm conservation constraint

was relaxed and a localized atom centered augmentation charges were introduced to make up the charge

deficit. These augmentation charges are defined as the charge density difference between the AE and

the PS wavefunction. Only for the augmentation charges, a small cutoff radius must be used to restore

the moments and the charge distribution of the AE wavefunction accurately. But the success of this

particular approach is partly hampered by rather difficult construction of the pseudopotential.

2.2.4 The Linearized Augmented Plane Wave + local orbital method

In spite of the fact that pseudopotential methods are extremely useful, if one is interested in information

that is inherently contained in the region near the nucleus (for example hyperfine splitting or core level

excitation), pseudopotential methods may not be the primary choice. In such cases Augmented Plane

Wave (APW) basis set can be more useful. In the region far away from the nuclei, the electrons are

relatively delocalized and thus can be described by plane waves. On the other hand, close to the nuclei,

the electrons behave in a localized manner confined in an isolated atom. In such case atomic like
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functions can describe the behaviour of the electrons more efficiently. Therefore the space can be

treated as divided into two regions, like we discussed for LMTO method in Subsection 2.2.1. Around

each atom a sphere of radius Rα is considered and such spheres are usually refereed as muffin tin

spheres(Sα ). The remaining space is called as interstitial region (I). One augmented plane wave (APW)

used in the expansion of φ~k is defined as

φ
~k
~G
(~r,E) =


1√
Ω

ei(~k+~G).~r ~r ∈ I

∑l,m Aα,~k+~G
lm uα

l (r′,E)Y l
m(θ ′,φ ′) ~r ∈ Sα

(2.22)

The symbols ~k, ~G and ~r have their usual meaning and Ω represents the volume of the unit cell.

Each atom inside the unit cell is labelled by α , hence this label is different for all atoms in the unit

cell, not just for all inequivalent atoms. The position inside the spheres is given with respect to the

center of each sphere by ~r′ =~r− ~rα . θ ′ and φ ′ are the spherical polar angles indicating the direction

of ~r′. The Y l
m are the spherical harmonics. The Aα,~k+~G

lm are parameters to be determined. The uα
l are

solutions to the radial part of the Schrödinger equation for an isolated atom α at the energy E. The

well-known condition for “well-behaved” wave function is that the solution must be continuous at the

boundary. This is not a obvious thing, as because a plane wave is oscillating in nature and has a unique

direction built in. Therefore to match it with another function based on spherical harmonics over the

entire surface of a sphere, is not straightforward. Let us expand the plane wave in spherical harmonics

about the origin of the sphere of atom α in the following way.

1√
Ω

ei(~k+~G).~r =
4π√

Ω
ei(~k+~G).~rα ∑

l,m
il jl
(
|~k + ~G||~r′|

)
Y l′

m (~k + ~G)Y l
m(θ ′,φ ′) (2.23)

where jl is the Bessel function of order l. The boundary condition ie. two functions of Eq.(2.22)

to be continuous at the sphere surface helps to uniquely determine Aα,~k+~G
lm . In principle there are an

infinite number of terms in Eq.(2.23). Therefore one can use infinite number of Aα,~k+~G
lm to create a

good matching between the two functions. In practice one have to truncate at some value lmax. A

practically used condition is that RαGmax = lmax, where Gmax is the cut-off for plane waves. This

allows to determine a good lmax for a given Gmax.
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Till now the basis set functions are dependent on energy E. Linearization of APW method ie. Lin-

earized Augmented Plane Wave (LAPW) helps to get rid of this problem. If one can determine uα
l at

some energy E0, then one could make a Taylor expansion to find it at energies not far away from it:

uα
l (r′,E) = uα

l (r′,E0)+(E0−E)
∂uα

l (r′,E)
∂E

|E=E0︸ ︷︷ ︸
u̇α

l (r′,E0)

+O(E0−E)2 (2.24)

Substituting the first two terms of the expansion in the APW for a fixed E0 gives the definition

of an LAPW. Since (E0−E) in the second term is unknown, hence another coeff. Bα,~k+~G
lm has to be

introduced.

φ
~k
~G
(~r,E) =


1√
Ω

ei(~k+~G).~r ~r ∈ I

∑l,m

(
Aα,~k+~G

lm uα
l (r′,E)+Bα,~k+~G

lm u̇α
l (r′,E)

)
Y l

m(θ ′,φ ′) ~r ∈ Sα

(2.25)

In order to determine both the coefficients, one need to match both the value and the slope of the

functions at the boundary. It is worth to mention that one should not choose an universal E0. Rather for

every physically important l (s,p,d and f states, i.e. up to l = 3) and for every atom one should choose

Eα
l . Electronic states that are extremely well bound to the nucleus (for example, 1s state of Cu) behave

almost exactly as if it were in a free atom. This means such a state does not participate directly in

chemical bonding with other atoms. Such states are called as core states and must be contained entirely

in the muffin tin sphere. States that leak out of the muffin tin sphere, are called valence states. Since

only valance states take part in chemical bonding, so to make the numerical method computationally

less heavy it is preferable to treat only valance states. Core states are treated as in free atoms, but

subject to the potential due to the valence states.

While applying this in practice, it frequently happens that states with the same l but a different principal

quantum number n are both valence states. Now in such cases it is not very clear how to choose Eα
l .

This dilemma is solved by adding another type of basis function to the LAPW basis set, called a local

orbital (LO). A local orbital is defined as:
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φ
α
lm,LO (~r) =


0 ~r /∈ Sα(

Aα,LO
lm uα

l (r′,Eα
1,l)+Bα,LO

lm u̇α
l (r′,Eα

1,l +Cα,LO
lm uα

l (r′,Eα
2,l))

)
Y l

m(θ ′,φ ′) ~r ∈ Sα

(2.26)

A local orbital is defined for a particular l and m, and for a particular atom α . It is zero in the

interstitial region and in the muffin tin spheres of other atoms, hence its name local orbital. In the

above expression Eα
1,l is the linearization energy value suitable for the state with higher l value among

the two valence states. The lower valence state which is much more free-atom-like, is sharply peaked at

an energy Eα
2,l . Therefore a single radial function uα

l (r′,Eα
2,l) at that same energy is sufficient to describe

it. These three coefficients Aα,LO
lm ,Bα,LO

lm and Cα,LO
lm in Eq.(2.26), are determined by the condition that

the LO is normalized, and has zero value and zero slope at the muffin tin boundary. Adding local

orbitals increases the LAPW basis set size, which in turn increases the computational time. But this

small price is paid for the much better accuracy that local orbitals offer, and therefore they are always

used.

2.2.5 The Projector-Augmented-Wave Formalism

P. E. Blöchl in 1994, developed the projector-augmented- wave (PAW) method, which combines the

linear augmented plane wave method with the plane wave pseudopotential approach. This method

turned out to be computationally elegant, transferable and accurate method for electronic structure

calculation. Later Kresse and Joubert [31] modified this PAW method and implemented within the

plane wave code of VASP.

In this formalism, the AE wavefunction Ψn is derived from the PS wavefunction Ψ̃n by means of a

linear transformation:

|Ψn〉= |Ψ̃n〉+∑
i

(
|φi〉− |φ̃i〉

)
〈p̃i|Ψ̃n〉 (2.27)

The index i is a shorthand for the atomic site at ~Ri. The all electron partial waves φi are the solutions

of the radial Schrödinger equation for the isolated atom. The PS partial waves φ̃i are equivalent to the

AE partial waves outside a core radius rl
c. Of course these two wavefunctions match both in value and
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slope at the boundary rl
c. The projector function p̃i for each PS partial wave localized within the core

radius, obeys the relation 〈p̃i|φ̃ j〉= δi j. From Eq.(2.27), the AE charge density in PAW method can be

written as,

ρ(~r) = ρ̃(~r)+ρ
1(~r)− ρ̃

1(~r) (2.28)

where ρ̃ is the soft pseudo-charge density calculated directly from the pseudo wavefunctions on a plane

wave grid. The on-site charge densities ρ1 and ρ̃1 are treated on radial support grids localized around

each atom. It should be mentioned that the charge density ρ̃1 is exactly the same as ρ1 within the

augmentation spheres around each atom. In PAW approach, an additional density, called compensation

charge density is added to both auxiliary densities ρ1 and ρ̃1 so that the multi-pole moments of the

terms ρ1− ρ̃1 in Eq.(2.28) vanish. Thus the electrostatic potential due to these terms vanishes outside

the augmentation spheres around each atom, just as is accomplished in LAPW method. Like density,

the energy can also be written as a sum of three terms and by functional derivatives of the total energy,

one can derive the expressions of Kohn-Sham equations.
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Chapter 3

Proposed Orbital Ordering in MnV2O4
†

3.1 Background

Inherent geometric frustration present in spinel systems have made this class of compounds to be a

potential candidate for study of magnetic, orbital and charge ordering in recent years [1]. MnV2O4

shows a complex behaviour including structural transitions from cubic to tetragonal symmetries which

are often accompanied by an orbital order-disorder transition as well as complicated magnetic orderings

at low temperatures. New experimental observations in single crystals [2] of MnV2O4 has revealed a

lower symmetry structure than previously suggested [3]. This has important implications for the related

orbital order at low temperatures which is still under study. In MnV2O4 both the A (Mn) and B (V)

site ions are magnetic with S= 5/2 and 1 respectively. The presence of two magnetic ions in this system

makes the magnetic phase transition more complicated than in other vanadium spinel oxides such as

ZnV2O4, MgV2O4, or CdV2O4 with nonmagnetic A-site ions [3, 2, 4]. MnV2O4 undergoes a phase

transition from paramagnetic to a collinear ferrimagnetic phase at 56 K where the Mn and V spin

moments point in opposite directions. At T = 53 K a second magnetic phase transition to noncollinear

ferrimagnetism follows, accompanied by a structural transition from cubic to tetragonal phase.

†This chapter is based on Phys. Rev. Lett. 102, 216405 (2009)
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3.2 Motivation the present work

The cubic to tetragonal structural transition in MnV2O4 is associated with a compression of the VO6 oc-

tahedron (cT /aT =0.98) which is similar to the vanadium spinel compound ZnV2O4. Although it should

be mentioned that there are examples of spinel compounds where this tetragonal phase is elongated,

like CoMn2O4[5], Mn3O4[6]. The octahedral environment of V (VO6) splits the d states into low lying

t2g and high lying eg. V3+ in this compound is in a 3d2 configuration. Hence the V-t2g orbitals are

partially filled giving rise to the possibility of orbital ordering. Earlier experimental observations [3]

indicated the low temperature structure belongs to tetragonal space group I41/amd . Although recent

precise experiments on single crystal [2, 4] reports that this tetragonal space group to be I41/a. The

orbital order and, accordingly, the magnetic order are closely related to the underlying space group

symmetry. Therefore it is very important to establish the space group symmetry unambiguously. The

I41/a space group breaks the mirror and glide symmetries present in the I41/amd space group. This

implies that two of the four V-O bonds in the ab plane are shorter whereas in I41/amd symmetry all four

V-O bond lengths are the same.

Garlea et al. [2] proposed a staggered A-type orbital ordering for this system based on their obser-

vations of the structural and magnetic phases at low temperature. Suzuki et al. [4] also proposed a

similar ordering as mentioned previously. The magnetic structure at low temperatures has been un-

ambiguously established by the above-mentioned experiments. In spite of that, it is worth to note that

there has not yet been any experiment such as x-ray resonant spectroscopy to directly probe the orbital

order. Determination of exchange couplings using neutron scattering techniques by Chung et al. [7]

is in apparent contradiction with the proposed staggered A-type orbital ordering. As pointed out by

these authors, the above mentioned proposed orbital order lacks the consideration of trigonal distortion

, which is found to be strongest in MnV2O4 among all the vanadium spinels. The trigonal distortion has

been often shown to have significant effects on the orbital order [8, 9]. Therefore the underlying orbital

cT and aT are the lattice parameters in tetragonal phase.
The angle between apical O, V and any one of the four O ions in ab plane should have been 90◦ in ideal VO6, but in

practice this angle deviates from the ideal value. This kind of distortion is commonly known as trigonal distortion.
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ordering in MnV2O4 can be much more complicated than what is reported in literature. Determination

of correct crystal symmetry is very crucial in order to find out the underlying orbital ordering. We have

discussed earlier, that first principles calculations can be carried out in order to theoretically optimiz-

ing crystal structure efficiently. Therefore first principles calculations can be employed to get a clear

picture regarding the low temperature crystal structure symmetry of MnV2O4. Also the magnetic ex-

change interactions (Js) can be determined successfully, at least the relative magnitude of Js, from first

principle calculations. Hence the orbital ordering and corresponding magnetic exchange interactions

can be studied from first principles point of view.

3.3 Results and Discussions

3.3.1 Structural Optimization

In order to study the orbital ordering at low temperature, one needs to settle down the issue of space

group of low temperature structure. In order to investigate the relative stability between I41/amd and

I41/a symmetries in MnV2O4, we performed a structural optimization using the plane wave method as

implemented in the Vienna ab-initio simulation package (VASP). In our calculations we have consid-

ered different exchange-correlation functional like local spin density approximation (LSDA), general-

ized gradient approximation (GGA), and LSDA + U. Following are the few details of parameters used

in our optimization calculation. We used projector augmented wave (PAW) potentials, and the wave

functions were expanded in the plane wave basis with a kinetic energy cutoff of 450 eV. Reciprocal

space integration was carried out with a k mesh of 6×6×6.

Mn and V in this compound occupy the high symmetry 4a and 8d positions. Therefore the calcu-

lation essentially involves optimization of the internal degrees of freedom associated with O. Spin

arrangement considered is of ferrimagnetic type with Mn and V spins pointing opposite to each other.

Calculations done within LSDA as well as GGA gave us a ground state structure of I41/amd symmetry.

In literature it has already been reported that electron-electron correlation influences the structural op-

timization in a quite significant way[10, 11]. We have further optimized the atomic positions within the
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LDA GGA LSDA+U

Mn 0.0 0.25 0.125 0.0 0.25 0.125 0.0 0.25 0.125

V 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.5

O 0.0 0.0243 0.7392 0.0 0.0236 0.7394 0.0059 0.0244 0.7383

Table 3.1 Energy-minimized structural parameters of MnV2O4. Lattice constants have been
kept constant at the experimental value [3]. Numbers quoted under LSDA+U are obtained
using U=4.5 eV.

LSDA + U approach with different choices of U values (U = 0.5, 1, 2, 3, 4.5, and 6 eV) for both Mn and

V. J was chosen to be 1 eV for all calculations. Mn and V are neighbors in the periodic table and it is

not to be expected that their U values will be very different. This is the reason why we considered same

U value for both Mn and V in our calculation. Remarkably, it has been seen that with the consideration

of U beyond 2 eV, the I41/a symmetry becomes the ground state structure. Table 3.1 shows the ion

positions of ground state structures.

The LSDA + U optimized structural parameters show the O x coordinate to be nonzero, signaling

the change of space group symmetry to I41/a. The O in I41/a are in 16f positions with nonzero x coor-

dinate, and this breaks the mirror and glide symmetry compared to the alternative proposed candidate

I41/amd . Not only that this non-zero x coordinate of O makes the V-O bond lengths even in the ab

plane to be unequal (see Fig. 3.1). This lowering of symmetry necessarily breaks the degeneracy of the

t2g states completely and also introduces mixing between different t2g states, which will be discussed

later in detail. It should be mentioned that the optimized structure under LSDA + U shows a tetragonal

distortion close to the experimentally reported one [3]. Undoubtedly these results indicate the impor-

tance of correlation effects for the description of the correct orbital ordering and the low temperature

structure. As mentioned above, we have used different U values for structural optimization and for each

of ground state structures we have determined the orbital and spin moment of individual ions. Among

all the theoretically optimized structures, U= 4.5 eV gives the closest comparison to the experimental

result. All further calculations are done considering this particular structure corresponding to U=4.5
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eV.

(b) (c)(a)

Figure 3.1 VO6 octahedral unit of optimized structure, calculated within LDA, GGA and
LSDA+U (from left to right) respectively. Different color of V-O bond indicates different
bond length. Note that for only LSDA+U optimized VO6 unit V-O bond lengths on ab plane
are also different.

3.3.2 Density of states and band structure

Mn2+ (d5) ion in MnV2O4 remains in high-spin (HS) configuration, with completely filled d states

in one spin channel and completely empty in other spin channel. On the other hand V3+ (d2) has

two electrons in its majority spin channel. Therefore only the majority spin channel is important as

because in minority spin channel either V-d states are completely empty or Mn-d states are completely

occupied.

From the Fig. 3.2 one can see that V-d states have split into two main groups, t2g (consisting of

x2− y2, xz and yz) and eg (consisting of 3z2− 1 and xy). Although the usual convention is that t2g

states are consist of xy, yz and xz orbitals, and the x2− y2 and 3z2−1 orbitals form eg sub-group. This

apparently different convention because of the fact that there is 45◦ rotation in ab plane between local

and global coordinate systems. Fig. 3.3 shows the five d orbitals, if there is a 45◦ rotation in xy plane of

co-ordinate system, x2− y2 and xy orbital will interchange their shape. Inclusion of correlation effects

in the V d orbitals through the LSDA + U approach splits the t2g states further and opens a gap of 1.1
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Figure 3.2 V-d partial DOS calculated within LSDA+U,for U=4.5 eV. Only the DOS for the
majority spin channel is shown (the minority spin channel is unoccupied). Energy plotted
along x-axis is with respect to Fermi energy (E f ).

eV. The degeneracy between all the three t2g orbitals is lifted in the low symmetry I41/a group. All the

three t2g states are partially filled with more occupancy in x2−y2 and yz orbitals compared to that of xz

orbital.

This becomes more evident from t2g band structure in majority spin channel, shown in Fig. 3.4

. The t2g bands are well separated from occupied O-p dominated bands by a gap of 1.5 eV and from

unoccupied eglike bands by a gap of 0.2 eV. The fatness of the bands in Fig. 3.4 represents the projected

band characters of x2−y2, xz and yz orbitals. It is evident from the band structure that significant mixing

between the t2g orbitals happens due to the lower symmetry in I41/a.

3.3.3 NMTO-downfolding calculation

We have performed NMTO-downfolding [12] calculations to construct a V-d only low energy Hamil-

tonian by integrating out other degrees of freedom, stating with a full LSDA+U Hamiltonian. Diago-

nalization of on-site block of the Hamiltonian can provide information regarding the precise V orbital

composition. Following are the eigen-states of 5× 5 on-site block of Hamiltonian, corresponding to
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Figure 3.3 Sub-grouping of five d orbitals under octahedral crystal field splitting. If xy plane
is rotated by 45◦ then x2− y2 and xy orbital should interchange their position in the above
diagram. Figure is taken from Tokura et al. Science 288, 462 (2000).
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Figure 3.4 LSDA + U band structure of MnV2O4 projected onto V-x2− y2, xz, and yz char-
acter (from left to right)

the eigen-values arranged in ascending order.

|1〉 = 0.78|x2− y2〉−0.59|xz〉−0.21|yz〉+0.07|xy〉+0.02|3z2−1〉

|2〉 = −0.35|x2− y2〉−0.15|xz〉−0.92|yz〉−0.09|xy〉−0.07|3z2−1〉

|3〉 = 0.52|x2− y2〉−0.79|xz〉−0.31|yz〉−0.13|xy〉+0.02|3z2−1〉

|4〉 = 0.05|x2− y2〉−0.08|xz〉−0.11|yz〉+0.66|xy〉+0.74|3z2−1〉

|5〉 = −0.02|x2− y2〉−0.11|xz〉+0.04|yz〉−0.73|xy〉+0.67|3z2−1〉
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The lowest energy state has predominant x2− y2 character along with a significant mixing of xz char-

acter. This is expected due to the trigonal distortion with the compression of VO6 octahedron along the

c direction. The next higher energy state is dominated by yz character. Therefore, the second electron

of V3+ always occupies the orbital with predominant yz character in all V sites. From our calculation

it is evident that an alternating occupation of xz and yz orbitals at the V sites is not a correct picture in

this scenario.

3.3.4 Charge-density calculation

yx
z

Figure 3.5 Three-dimensional electron density plot showing the orbital ordering. The black
solid and dashed lines designate the orbital chains. The arrows superimposed on the electron
density at each V site mark the rotation sense of the orbitals as one moves to neighboring
V sites within a given chain. The atoms at the alternate corners of the distorted cubes are
occupied by V and O, respectively.

Fig. 3.5 shows the three-dimensional electron density of occupied V t2g orbitals on a real space

grid, in which a long range order pattern for the orbital distribution can be found. One can observe

orbital chains along a and b directions (indicated by solid lines and dashed lines). It should be noted

that the orbitals within each chain rotated alternatively by about 45◦, which is shown by the arrow
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marks. This is in contrary to the proposed staggered A-type ordering of orbitals. [2, 4] The staggered

trigonal distortion that is present both within the ab plane and along the c direction is the root cause

behind the rotation of orbitals with respect to each other within the chain and between the chains. We

call the ordering ferro-orbital since it is in all sites the same orbital that is occupied by the second

electron, and not an alternating occupation of xz and yz.

3.3.5 Effect of spin-orbit interaction

The spin-orbit coupling has been observed to play a significant role in dictating the nature of orbital

order [8, 13] in similar type of vanadate spinel ZnV2O4. It has also been proposed to be important

for the magnetic and orbital physics of MnV2O4[14]. We performed LSDA + U + SO calculations

with the same U values as mentioned previously. The spin-orbit effects have been incorporated in our

calculation as a second variation using the scalar relativistic approximation. Contrary to the case of

ZnV2O4 [8], we do not observe any significant difference in charge density from that of LSDA + U. It

is well-known that the value of the orbital moment depends sensitively on the choice of U. It has already

been mentioned in subsection 3.3.1, that the experimental V moment is best described for U = 4.5 eV.

At this U value we obtain an orbital moment of about 0:34µB at V site which is antiparallel to the

spin moment (-1.65 µB). This is in accordance with the Hunds rule, since V-d orbitals are less than

half filled. Theoretically calculated total magnetic moment and spin moment at Mn site are 1.3 µB and

4.24µB respectively. These are in good agreement with the experimental estimate.[2] It should be noted

that the perfect antiferro-orbital ordering as proposed earlier in literature would imply a quenching of

orbital moment. The presence of a finite orbital moment can therefore be associated with the breakdown

of perfect antiferro-orbital ordering.

3.3.6 Magnetic exchange interaction and non-collinear spin arrangement

The magnetic exchange couplings have been computed from first principles by considering LSDA +

U total energy calculations. For this purpose we have considered different spin orientations of V ions

within the V-only tetrahedra. The corresponding total energies have been mapped to a Heisenberg-like
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model to estimate the magnetic exchange along the orbital chains (J) and between the chains (J′). The

values obtained from our calculation are 11 meV and 2 meV respectively. This implies α ≈ J/J′ = 0.2

compared to 0.3 found by Chung et al. [7]. Perfect antiferro-orbital ordering with xz and yz alternately

occupied along the orbital chain would, however, yield much smaller ratios of J/J′. This is because

the overlap between orthogonal yz and xz orbitals at neighboring sites would have been nearly zero.

Fig. 3.6 shows a schematic diagram of this situation. The moderately strong value of J′, as obtained

in our calculation, originates from large mixing of different t2g orbitals influencing the overlap of the

re-normalized orbitals at neighboring sites.

V1
V2

V3

V4

J

J’

Figure 3.6 Schematic diagram of projec-
tion of V tetrahedron on xy plane with xz
and yz orbitals occupying alternate V site.
The dashed lines represent V-V interac-
tion along the chains (J), where as the
solid lines represent the same between the
chains (J′). The solid filled and dash-line
filled orbitals represents xz and yz orbitals
respectively.

Figure 3.7 Noncollinear spin arrange-
ment of V spins on pyrochlore network of
V only sub-lattice. The Blue color arrows
indicate V spin which are rotated in about
the c-axis direction. Mn spins (Brown
arrows) remain collinear ie. along the
c-axis direction. Figure is taken from
Ref.[2].

All the calculations reported so far have been computed assuming collinear spin arrangement of

V ions. Although experiment reports a transition from collinear to noncollinear spin arrangement

coincident with the structural phase transition. Fig. 3.7 shows the noncollinear spin arrangement of

V spins We have carried out calculations to confirm whether our proposed orbital order sustains a

noncollinear arrangement of V spins. We relaxed the V spin orientation keeping the Mn spins aligned
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parallel to the c axis. The relaxed spin structure shows the V spins to be canted with respect to the c

axis by about 63◦, which is in very good agreement with the experimentally estimated canting of 65◦

reported by Garlea et. al.[2].

3.4 Conclusion

To investigate the nature of the orbital ordering in MnV2O4, DFT-based first principles calculations

have been carried out. This orbital ordering is closely associated with the transition from a high tem-

perature cubic structure to a low temperature tetragonal structure. Crystal structure optimization shows

a strong influence of correlation effects in the choice of the correct low temperature structure. The

ground state structure at low temperature is I41/a, which loses the mirror and glide symmetry com-

pared to the alternative proposed candidate I41/amd . This lowering of symmetry necessarily breaks the

degeneracy of the V-t2g states completely and also introduces mixing between different t2g states. The

resulting eigen states therefore turn out to be of mixed character and non-degenerate, which get filled up

by two V electrons. The corresponding orbital ordering at the V site represents a ferro-orbital ordering

with formation of orbital chains in which the orbital rotates from one site to another both between and

within the chain due to the presence of a co-operative type of local trigonal distortion at the V site. V-V

magnetic exchange has been computed which are in good agreement with experimental results. Our

computed results provide an explanation of the controversy between antiferro-orbital ordering versus

the strong exchange between the orbital chains (J′). Our proposed orbital ordering is capable of pre-

dicting correctly the noncollinear spin structure as observed experimentally [2]. There is a recent NMR

study on single crystal of MnV2O4 [15], which reports the orbital ordering at V sites to be consistent

with the orbital ordering model proposed by us.
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Chapter 4

Coulomb enhanced spin-orbit coupling

driven insulating phase in FeCr2S4
†

4.1 Introduction

FeCr2S4 is a known member of spinel family. Since ’70s, it has regained interest due to the recent dis-

covery of large negative magnetoresistance (MR)[1]. The MR effect has been discussed in the context

of non-double exchange like model because of the absence of mixed valency and lack of any strong

evidence of formation of Jahn-Teller (JT) polarons. The system is insulating above 180K and below

150K. At 180K temperature, there is magnetic transition in this compound with Fe2+ and V3+ ions

coupled ferrimagnetically. This magnetic ordering persists even up to 50mK. Between the temperature

range 180 K-150 K, metallic behaviour is shown by the compound [1, 2]. There have several experi-

mental studies on this particular compound, but theoretical work reported is almost none except initial

calculations [3] done by Park et al. We have carried out a detailed density functional theory study of

the electronic structure of this material to understand the low temperature insulating phase.

†This chapter is based on Phys. Rev. B 80, 201101(R) (2009)
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4.2 Motivation of the present work

A type and B type atom in this spinel compound, FeCr2S4, are Fe and V respectively. Therefore

Fe2+(d6) and V3+(d3) ions are in tetrahedral and octahedral environment respectively. Since Fe2+

ion is in high spin state, in majority spin channel Fe-d states are completely filled with one electron

left in minority spin channel at degenerate Fe e levels. On the other hand, V3+ with three electrons

completely occupies the t2g states in majority spin channel with eg states completely empty. Hence one

should expect half-metallic solution for the ground state of FeCr2S4. This is in contradiction with the

experimental report of insulating ground state of FeCr2S4.

Fe2+ Cr
3+

Figure 4.1 Schematic diagram showing expected half-metallic ground state of FeCr2S4. Cr3+

with d3configuration have t2g states completely occupied and eg states completely empty. On
the contrary, Fe2+ with d6 configuration, have full-filled d levels in up-spin channel and a
single electron in doubly degenerate e states in down spin channel, giving rise to a half-
metallic ground state.

We have carried out first principles calculations to understand the counter intuitive low temperature

ground state of FeCr2S4. In addition to this, there has been controversy regarding the low tempera-

ture structure of this compound. There are indications of some structural distortions at low temperature

(≤ 60K)[4, 5]. Although the nature and existence of this distortion are debated. Reports from x-ray and

neutron-diffraction studies [6] says that the sample remains in Fd3̄m symmetry down to a temperature

of 4.2 K. However, a recent transmission electron microscopic studies,[7] assigned a noncentrosym-

metric F43̄m space group to the low-temperature structure. This structural aspect needs to be made

clear for a better understanding of low temperature structure of FeCr2S4. There have been several

experimental studies on this compound, including optical properties also. There have been reports of

optical reflectivity and conductivity [8, 9, 10] measurements on this compound. We have computed
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optical properties like reflectivity, from first principles calculations and compared with experimental

data.

4.3 Results and Discussions

4.3.1 Crystal structure

Experimentally measured crystal structure of FeCr2S4 shows cubic space group of symmetry Fd3̄m

with lattice parameter a= 9.99 Å and us = 0.384, [3, 6] where us is the internal parameter of S position

in Fd3̄m space group. The deviation of S position from the ideal value of 0.375 introduces trigonal

distortion at CrS6 octahedra in terms of two distinct S-S bond lengths of 3.28 and 3.54 Å. The tethedral

unit FeS4 in this space group however, remains ideal. The octahedral environment splits Cr-d levels

into usual low-lying t2g and high lying eg blocks, and there is some mixing between the two due to

nonzero trigonal distortion present in CrS6 octahedra. In the next section we shall discuss this in detail

in context of DOS calculation.

The calculations have been carried out within the frame work of LAPW basis set as implemented in

WIEN2K code. The number of plane waves is restricted using the criteria muffin-tin radius multiplied

by kmax yielding a value of 7. The total Brillouin zone (BZ) was sampled with 256 k points for self

consistent calculations. The NMTO-downfolding calculation was used to determine the crystal field

splitting at Fe and Cr sites. For this purpose, NMTO-downfolding calculations were carried out keeping

only the Fe-d and Cr-d states active and downfolding all the other states, including S-p states. The on-

site block of the real-space Hamiltonian in the Fe-d and Cr-d basis gives the crystal field splitting.

4.3.2 Density of states and energy level splitting within GGA

Cr3+(d3) has completely filled t2g states in up spin channel and all the d states empty in down spin

channel, which can be seen in Fig. (4.2). The Fe d levels are completely occupied in down spin chan-

nel with partially filled e block in up-spin channel. This confirms the nominal 3+ and 2+ valency of Cr

and Fe, respectively. Calculation within GGA results in a half-metallic ground state, which is in contra-
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Figure 4.2 spin-polarized partial density of states calculated within GGA. Fe-d states, Cr-d
states, and S-p states are presented by solid black lines, broken gray lines and filled light gray
areas, respectively. Energy is plotted with respect to Fermi energy (E f ).

diction with the experimental reports, as discussed at the beginning of this chapter. The superexchange

interaction between half-filled Cr t2g states and half-filled Fe d states gives rise to antiferromagnetic

coupling between Cr and Fe. On the other hand, ferromagnetic coupling between Cr and Fe can result

due to the superexchange interaction between empty Cr eg states and partially filled Fe levels. The

former becomes dominant which results into net antiferromagnetic coupling between Cr and Fe with

magnetic moments at Cr and Fe sites 2.75 and -3.14 µB, respectively, with a total magnetic moment of

2 µB/ f .u.

In order to evaluate the crystal field splitting at Fe and Cr site, we have carried out NMTO down-

folding calculations. In this calculation we have downfolded all the states except Fe-d and Cr-d. The

crystal-field splitting at the Fe site is found to be smaller than the spin splitting, while at the Cr site

they are found to be comparable. Energetically Cr egup-spin states are close to Fe d states in the up-

spin channel. This causes significant hybridization between empty Cr eg and Fe d states in the up-spin

channel.
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Figure 4.3 The energy levels of Fe and Cr d levels in eV unit, calculated using NMTO
downfolding technique.

4.3.3 Band structure beyond GGA

In order to have the desired insulating ground state, both, missing correlation effect [3] as well as the

Jahn-Teller (JT) effect,[4] have been discussed in literature to account for this discrepancy. Regarding

the JT effect, it should be noted that the relevant JT ion Fe2+ is in tetrahedral environment with Fe

e states being the relevant degree of freedom. The JT distortion within the e manifold which point

in between the S ions is expected to be weak. There are indications of some structural distortions

of FeCr2S4 at temperature below 60 K [4, 5], although the nature and existence of this distortion are

debated. The x-ray and neutron-diffraction experiments [6] reports that the sample remains in Fd3̄m

symmetry, down to a temperature 4.2 K. A recent transmission electron microscopic studies,[7] reports

that the low temperature structure to be in F4̄3m symmetry. Lowering symmetry from Fd3̄m to F4̄3m

would give rise to two inequivalent Fe ions in the unit cell, it can not to lift the degeneracy within the e

block avoiding the JT distortion. We shall discuss this point in detail later.

Leaving aside the possible influence of structural distortion, band dispersion of FeCr2S4 in Fd3̄m sym-

metry along the high-symmetry points of the BZ of the cubic-face centered (FCC) lattice in the up-spin

channel is studied (see Fig. 4.4). We considered only the up spin channel because in down spin either

all states are completely filled or completely empty. From left to right, the various panels show the

results obtained on the basis of GGA, GGA+U, GGA+SO, and GGA+U+SO calculations. The band
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Figure 4.4 Band structure of FeCr2S4 in the up-spin channel. Energies are plotted with
respect to EF in eV unit. From left to right: band structures calculated with GGA, GGA+U,
GGA+SO, and GGA+U+SO, respectively. In the GGA+U, and GGA+U+SO calculations,
the U values were chosen as UFe=2.50 eV, UCr=1.50 eV, and JFe=0.9 eV, JCr=0.8 eV.

dispersion calculated within GGA, corresponds to the DOS shown in Fig. 4.2. It shows that degenerate

Fe e bands of 3y2− r2 and z2− x2 cross E f making the system half-metallic.

The band structure taking into account the missing correlation in GGA calculation, incorporated

within GGA+U formalism is shown in next panel of Fig. 4.4. The GGA+U method is designed to make

the configurations with larger magnetization more favorable. Here in a manifold of degenerate bands

involving only one spin channel, the method is therefore not effective, although the double counting

scheme still remains operative. Our study reveals that the application of onsite U increases the gap

between e and t2 blocks of Fe d states compared to that obtained from GGA calculations. We have

also found that with increasing value of U this gap also increases, keeping the structure of degenerate

e bands crossing the Fermi level intact. Therefore it can be concluded that the inclusion of on-site

Hubbard U is not capable of driving the insulating solution, unless the symmetry is broken by some

means.

The third panel of Fig. 4.4 shows the result of inclusion of spin-orbit coupling (SOC). Our calculation

shows that spin and orbital moments have the same sign for Fe, but opposite sign for Cr. This is in
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accordance of Hund’s rule, since the d states of Fe2+ are more than half filled, but those of Cr3+ are

less than half filled (see Table 4.1). The orbital moment at the Cr site is found to be small due to the

d3 configuration of Cr. On the other hand, the orbital moment at Fe site is found to be large which

is bit surprising. The two degenerate e states of Fe comprising of states which differ by ∆lz = 0,±2,

therefore orbital moment should vanish. However this finite orbital moment at Fe site can happen

through coupling with empty Fe t2 states. In order to understand the role of SOC in the Fe d manifold,

let us consider the following Hamiltonian. The spin-orbit part of the Hamiltonian is given by,

ĤSO = λ [Ŝz(L̂zcosθ +
1
2

L̂+e−iφ sinθ +
1
2

L̂−eiφ sinθ)

+
1
2

Ŝ+(−L̂zsinθ − L̂+e−iφ sin2 θ

2
+ L̂−eiφ cos2 θ

2
)

+
1
2

Ŝ−(−L̂zsinθ − L̂+e−iφ cos2 θ

2
+ L̂−eiφ sin2 θ

2
)] (4.1)

In the Eq. (4.1) θ and φ are the zenith and azimuthal angles of the magnetization direction of

the spin moment. Calculation within GGA shows that the up and down spin states are energetically

separated by 1.5-2 eV. Therefore it is expected that these states would not couple through SOC. Hence

the parts of the spin-orbit Hamiltonian with spin raising and lowering operator (last two parts of the

Eq.(4.1)) have been neglected and the effective Hamiltonian studied is given as,

ĤSO = λ [Ŝz(L̂zcosθ +
1
2

L̂+e−iφ sinθ +
1
2

L̂−eiφ sinθ)] (4.2)

The angular parts of the d orbitals have been expressed in terms of spherical harmonics. Our

calculation shows that SOC introduces coupling between empty Fe |xz〉, |yz〉 states and |z2−x2〉, |3y2−

r2〉 states. The coupling 〈yz|ĤSO|z2− x2〉 is ∝ sinθcosφ , 〈xz|ĤSO|z2− x2〉 is ∝ sinθsinφ and similar

dependencies are found for the coupling with |3y2− r2〉 state. Keeping this in view, the matrix form of

Hamiltonian, given in Eq. (4.2), takes the following form.
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where, ε1 and ε2 are the energies of Fe t2 and e states respectively. Starting from 5×5 Hamiltonian

we carried out downfolding technique to get the Fe-Fe on-site Hamiltonian in z2−x2 and 3y2−r2 basis

set. In section 2.2.2 of chapter 2, we have mentioned about how downfolding technique works. In this

technique, the space of a basis set is considered to be subdivided into two subsets, lower |l〉 and |h〉.

The reduction of the full Hamiltonian H into the lower subset Hamiltonian H̃ll is carried out in such a

manner that lower l eigenvalues of H and eigenvalues of H̃ll are same. The formation of H̃ll introduces

additional energy dependence through the expression

H̃ll = Hll−Hlh
1

(Hhh− ε)
Hhl (4.3)

In the present example let us first downfold the |xy〉 state. Hence to be consistent with Eq. (4.3),

now Hhh = ε1, ε is chosen as Fermi energy and Hlh,Hhl , Hll take the following form,

Hhl =
[

0 0 i sinθsinφ −i sinθcosφ

]
Hlh =



0

0

−i sinθsinφ

i sinθcosφ



Hll =



ε2 0 i 1−
√

3
2 sinθcosφ i 1−

√
3

2 sinθsinφ

0 ε2 i
√

3(1+
√

3)
2 sinθcosφ i

√
3(
√

3−1)
2 sinθsinφ

i (
√

3−1)
2 sinθcosφ −i

√
3(
√

3+1)
2 sinθcosφ ε1 i cosθ

i (
√

3−1)
2 sinθsinφ i

√
3(
√

3−1)
2 sinθsinφ −i cosθ ε1



Now using Eq. 4.3 one can evaluate H̃ll , which in this case is the downfolded form of 5× 5

Hamiltonian in |z2− x2〉, |3y2− r2〉, |yz〉, |zx〉 basis. After downfolding the xy state, the Hamiltonian
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takes the following form,

H̃ll =



ε2 0 i (1−
√

3)
2 sinθcosφ i (1−

√
3)

2 sinθsinφ

0 ε2 i
√

3(1+
√

3)
2 sinθcosφ i

√
3(
√

3−1)
2 sinθsinφ

−i (1−
√

3)
2 sinθcosφ −i

√
3(1+

√
3)

2 sinθcosφ ε1 + sin2θsin2φ

εF−ε1

sin2θsin2φ

2(εF−ε1)
+ i cosθ

−i (1−
√

3)
2 sinθsinφ −i

√
3(
√

3−1)
2 sinθsinφ

sin2θsin2φ

2(εF−ε1)
− i cosθ ε1 + sin2θcos2φ

εF−ε1



Repeating the same procedure to downfold the yz and zx state, one can get the Fe-Fe on-site Hamil-

tonian in z2− x2 and 3y2− r2 basis set. To simply the expressions let us consider φ = π

2 and θ as

variable. The downfoladed 2×2 Hamiltonian takes the following form:

H =

 ε2 + ε̃(θ) −
√

3ε̃(θ)

−
√

3ε̃(θ) ε2 +3ε̃(θ)

 (4.4)

where

ε̃(θ) =

(√
3−1
2 sinθ

)2

εF − ε1− cos2θ

εF−ε1− sin2θ

εF−ε1

The difference between eigen values of the Hamiltonian gives the splitting between the two e states.

For this particular example, the splitting comes out to be 4ε̃(θ). Therefore it can be noted that the

splitting between Fe z2− x2 and 3y2− r2 states does depend on the Fe t2 states.

Our study reflects to the fact that the SOC-induced splitting between Fe z2−x2 and 3y2−r2 are strongest

for θ = π

2 . In other words, the above mentioned splitting are strongest when the spin quantization axis

is in the xy plane. We considered the onsite energies of Fe d orbitals as shown in the Fig. 4.3, and

considered a typical value of spin-orbit coupling parameter λ =−0.02 eV. For a fixed value of θ = π

2 ,

the splitting between Fe 3y2− r2 and z2− x2 states as a function of φ has been evaluated and is shown

in Fig. 4.5. From this figure it is clear that the splitting between those two Fe e states is strongest for

φ = 0.
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Figure 4.5 Splitting between Fe z2− x2 and 3y2− r2 levels in eV plotted as function of φ

Fe Cr

Orbital Spin Orbital Spin

moment moment moment moment

GGA · · · -3.135 · · · 2.750

GGA+U · · · -3.279 · · · 2.720

GGA+SO -0.077 -3.133 -0.024 2.754

GGA+U+SO -0.134 -3.270 -0.026 2.690

Table 4.1 Magnetic moments of Fe and Cr ions in µB.

Effect of SOC in presence of Coulomb U

The splitting introduced between Fe e states due to SOC, however is not enough to make the system

insulating. The situation changes remarkably upon application of GGA+U+SO, as is shown in the right

most panel of Fig. 4.4. The SOC in presence of Coulomb U, introduces enough splitting between Fe

z2− x2 and 3y2− r2 states so that the system becomes insulator. This kind of Coulomb enhanced spin-

orbit splitting as has been already seen for Sr2RhO4[11] and for double perovskite Ba2NaOsO6[12].

Choice of U and J value for Fe and Cr ions in this particular calculation is furnished below.

UFe=2.50 eV, UCr=1.50 eV, JFe=0.9 eV, and JCr=0.8 eV

The SOC enhanced by Coulomb correlation opens up a gap of 0.1 eV with z2−x2 completely occupied
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and 3y2− r2 being completely empty. With the increase of U value at Fe site, the gap value increases

because of the fact that double-counting correction pushes the empty local states further apart, although

the orbital moment at Fe saturated. The variation in the band gap and Fe orbital moment as a function

of U is shown in Fig. 4.6.
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Figure 4.6 Variation of Fe orbital moment (upper panel) and band gap (lower panel) as a
function U applied at Fe site.

The magnetocrystalline anisotropy energy has also been computed for this compound, which turns

out to be 10 meV/Fe. This anisotropy energy is the energy difference between calculations with the

spin quantization along [001] and [110], however the system favors the spin quantization axis to be

along [110]. The spin quantization is found to be further favored along [100] by 20 meV/Fe compared

to [110], which is consistent with our findings from Fe t2 mediated SOC.

4.3.4 Possible structural distortion at low temperature

As discussed in subsection 4.3.3, there is possibility of S and Cr movements in the low-temperature

crystal structure of FeCr2S4[7]. As a next step of our study we have investigated the possible structural

transition from Fd3̄m to F4̄3m by total energy calculations. There have reports of similar controversy

regarding the space group of another spinel compound MgAl2O4. In case of MgAl2O4 also, it is
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debated which is the correct symmetry, Fd3̄m or F4̄3m[13, 14]. We follow the scheme adopted by

Staszak et. al. for determination of ion positions of MgAl2O4 in F4̄3m, to carry out calculations for

checking which one is the favorable symmetry of FeCr2S4, Fd3̄m or F4̄3m. The ion positions of cubic

spinel compound in F4̄3m space group is given in Table 4.2.

Ion Position

Fe 0.0, 0.0, 0.0

Fe 0.25, 0.25, 0.25

Cr 0.625 + δ3, 0.625 + δ3, 0.625 + δ3

O 0.375 + δ1, 0.375 + δ1, 0.375 + δ1

O 0.875 - δ2, 0.875 - δ2, 0.875 - δ2

Table 4.2 Position of ions of FeCr2S4 in F4̄3m space group

From the Table 4.2 it is clear that within F4̄3m space group there are two inequivalent Fe and S ions

and one inequivalent Cr ion. If δ1 and δ2 becomes equal and δ3 becomes zero then the ion positions

of F4̄3m space group actually corresponds to that of Fd3̄m (see Table 4.2)[13]. δ1 and δ2 governs the

distortion related to the movement of S ions, where as δ3 is associated with movement of Cr ions. We

carried out total-energy calculations within the framework of GGA+U+SO with same choice of U, J

values as discussed earlier, assuming F4̄3m symmetry. We have considered different sets of values of

(δ1, δ2), and for each set δ3 is varied over a range of -0.002 to 0.002.

The total-energy curve as shown in Fig. 4.7 shows a tendency of small Cr movement as well as

some movements of S ions in the low temperature structure of FeCr2S4. It is interesting to note that the

small movements in S ions produce two different class of FeS4 tetrahedra of different volumes. This S

movement dose not introduces any distortion in the FeS4 tetrahedra, those tetrahedra remain uniform.

Therefore even in the FeCr2S4 structure with both Cr and S ion displacement, the Fe t2 states remain

degenerate. We repeated electronic structure calculations with ionic positions as given in F4̄3m crystal

structure. Our study reveals that S movements tend to reduce the band gap, while the Cr movement
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Figure 4.7 A series of minimum-energy curves plotted against the variation of Cr position
δ3, for various choices of S movements: (a)δ1 = δ2 = 0.0090; (b)δ1 = 0.0095,δ2 = 0.0085;
(c)δ1 = 0.0085,δ2 = 0.0095; (d)δ1 = 0.0085,δ2 = 0.0100; (e)δ1 = 0.0100,δ2 = 0.0085;
(f)δ1 = 0.0090,δ2 = 0.0095; (g) δ1 = 0.0095,δ2 = 0.0090. The inset shows the two lower
most curves. For the lowest curve (b) the minimum energy position corresponds to non-zero
value of δ3.

tends to increase it. The optimized values of S and Cr movements, given by curve “b”, gave rise to a

gap of 0.2 eV.

4.3.5 Computed optical conductivity and reflectivity

There have been reports of optical reflectivity and conductivity [8, 9, 10] measurements on this partic-

ular sulphide spinel. It is therefore worthwhile to compute the optical properties from first-principles

calculations and compare with the experimental results. In doing so, the reflectivity spectrum was

calculated using the joint density of states and the dipole matrix elements .

Joint density of states (JDOS) provides the optical conductivity in arbitrary units if one can ignore

the transition rules. It is given by

JDOS(ω) =
4π2e2

Ωm2ω2 ∑
knn′ς

δ (εkn′− εkn− h̄ω)



4.3 Results and Discussions 68

where e and m are the charge and mass of the electron, Ω is the volume of the unit cell, ω is the

photon frequency, and εkn′ and εkn are the eigenvalues of conduction (final) and valence (initial) bands at

k point in the Brilliouin zone for ς spin channel. Realistic comparison of theoretically calculated optical

properties with experimental optical spectrum is only possible when the actual transition probabilities

or the dipole matrix elements are convoluted with JDOS. Band structure calculations provide only

the dispersive and the absorptive parts of the diagonal and off-diagonal conductivities,respectively,

using the selection rules. The corresponding imaginary or real counterparts are obtained by using

the Kramers-Kronig transformation. The expressions for the diagonal conductivity and off-diagonal

conductivity are given by,

σi j(ω) =
4π2e2

Ωm2ω
∑

knn′ς
(〈knς |pi|kn′ς〉〈kn′ς |p j|knς〉)×δ (εkn′− εkn− h̄ω)

where 〈knς |pi|kn′ς〉 is the dipole matrix element evaluated in the basis of the Kohn-Sham orbitals.

It gives the transition probability from state n to state n′ at kth point in BZ in the ς spin channel, with

pi being the momentum operator in the i direction. Dielectric function (ξi j) is given as

ξi j(ω) = δi j + i
4π

ω
σi j(ω)

. In turn the reflectivity can be expressed as

R(ω) = |
√

ξxx(ω)−1√
ξxx(ω)+1

|2

It should be noted that though the experimental spectra were measured at room temperature, such

a comparison is found to be reasonable. None of the optical experiments reported till date show

any substantial modification of the optical spectrum in the energy region explored as temperature is

changed,[10] which indicates that the gross electronic structure remains unaltered by the temperature

variation. The experimental spectrum shown as dotted line in Fig. 4.8 shows a peaked structure (struc-

ture I) at about 0.3 eV and a broad one (structure II) between 0.7 and 7.0 eV. In between these two struc-

tures there is a dip at about 0.5 eV. The reflectivity data calculated is calculated within GGA+U+SO, as

shown in the previously mentioned figure by solid line. In general there is a good agreement between

our calculated reflectivity data and experimental data. The broad shape and position of structure II,
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Figure 4.8 Comparison of calculated reflectivity spectrum (solid line) and experimentally
measured spectrum (dotted line). Two calculated spectra in the inset, shown as black and
grey solid lines, correspond to calculations in undistorted and distorted crystal structure, re-
spectively.

which originates from the transitions involving fully occupied Cr t2g and S p states in the valence band,

and the empty Fe d and Cr eg and S p hybridized states in the majority-spin channel and the fully filled

Fe d hybridized with S p states to the empty Cr d states in the minority-spin channels, agrees very well

with the experimental one. On the other hand the peak at structure I is much broader in the calculation.

Regarding this point an important issue to consider is the influence of the structural distortion. The in-

set of fig. 4.8, shows the change in the reflectivity caused by the movements of Cr and S ions (spectrum

shown in solid gray line). It is found to alter structure I while keeping all the structures beyond 1.2 eV

unaltered. Structure I narrows down and moves down in energy and the following dip moves down,

thereby providing a better agreement in the low energy feature. The precise determination of the ionic

positions therefore seems crucial.
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4.4 Conclusion

In this chapter we have shown how first principles calculations have been employed to study the origin

of insulating ground state of FeCr2S4 in low temperature regime. Our study reveals that the insulating

behaviour is driven by spin-orbit coupling within Fe e states which gets renormalized in presence of

Coulomb correlation. This adds FeCr2S4 to the list of compounds exhibiting Coulomb enhanced spin-

orbit coupling. The large spin-orbit coupling found within Fe e states are quite unusual and we have

found that this happens due to coupling with empty Fe t2 states. The possible role of low-temperature

structural distortion of this sulphide spinel has been explored. Our total-energy calculation shows ten-

dency of both S and Cr movements in the low temperature phase of FeCr2S4. Comparison of calculated

reflectivity spectrum with experimentally measured data shows improved agreement in the mid infra-

red regime upon inclusion of structural distortion. More experimental studies are needed for a complete

understanding of the optical properties.



Bibliography

[1] A. P. Ramirez, R. J. Cava, and J. Krajewski, Nature 386, 156–159 (1997).

[2] Z. Chen, S. Tan, Z. Yang, and Y. Zhang, Phys. Rev. B 59, 11172–11174 (1999).

[3] M. S. Park, S. K. Kwon, S. J. Youn, and B. I. Min, Phys. Rev. B 59, 10018–10024 (1999).

[4] M. Spender and A. Morrish, Solid State Communications 11, 1417 – 1421 (1972).

[5] M. Eibschutz, S. Shtrikman, and Y. Tenenbaum, Physics Letters A 24, 563 – 564 (1967).

[6] G. Shirane, D. E. Cox, and S. J. Pickart, Journal of Applied Physics 35, 954–955 (1964).

[7] M. Mertinat, V. Tsurkan, D. Samusi, R. Tidecks, and F. Haider, Phys. Rev. B 71, 100408 (2005).

[8] T. Ogasawara, K. Ohgushi, H. Okamoto, and Y. Tokura, Journal of the Physical Society of Japan

75, 083707 (2006).

[9] K. Ohgushi, Y. Okimoto, T. Ogasawara, S. Miyasaka, and Y. Tokura, Journal of the Physical

Society of Japan 77, 034713 (2008).

[10] K. Ohgushi, T. Ogasawara, Y. Okimoto, S. Miyasaka, and Y. Tokura, Phys. Rev. B 72, 155114

(2005).

[11] G.-Q. Liu, V. N. Antonov, O. Jepsen, and O. K. Andersen., Phys. Rev. Lett. 101, 026408 (2008).

[12] H. J. Xiang and M.-H. Whangbo, Phys. Rev. B 75, 052407 (2007).

71



BIBLIOGRAPHY 72

[13] P. R. Staszak, J. E. Poetzinger, and G. P. Wirtz, Journal of Physics C: Solid State Physics 17, 4751

(1984).

[14] K. D. Rouse, M. W. Thomas, and B. T. M. Willis, Journal of Physics C: Solid State Physics 9,

L231 (1976).



Chapter 5

Comparative study of two similar spinels :

FeCr2S4 and FeSc2S4
†

5.1 Introduction

In the previous chapter we have discussed about FeCr2S4 in which the orbitally active ion is A-site ion

Fe2+. In the present chapter we shall consider another spinel compound in which like FeCr2S4, A-site

ion is also Fe2+. Except for the difference in B-site ion, formula of these two spinel compounds are

exactly same. In FeCr2S4 the B site ion is Cr3+ which is magnetic with local S=3/2 moment, while in

FeSc2S4 compound the B site is occupied by Sc3+ which has filled shell [Ar] configuration. The A site

ion, Fe2+(d7) in both the compounds, has one hole in the doubly degenerate e levels of the tetrahedrally

split fe d levels, giving rise to orbital degeneracy.

5.2 Motivation of the present work

Although the chemical formula of the two spinel compounds FeCr2S4 and FeSc2S4 are exactly the

same except for B-site ion, these compounds behave very differently. The Cr-compound orders mag-

†This chapter is based on Phys. Rev. B 82, 041105(R) (2010)
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netically in a ferrimagnetic spin arrangement between Fe and Cr moments with a transition temper-

ature of 167 K[1] while FeSc2S4 does not order magnetically even up to a measured temperature of

50 mK[2]. Experiments with poly-crystalline samples of FeCr2S4 reports long-range orbital ordering

while a glassy freezing phase has been observed in single crystals of the same compound. In contrast to

this, FeSc2S4 has been reported as an orbital liquid[3]. The Curie-Weiss temperature (ΘCW ), obtained

by fitting the high temperature behaviour of magnetic susceptibility, for these two compounds are -200

K (FeCr2S4[3]) and -45 K (FeSc2S4[3]) (see Fig. 5.1).

Figure 5.1 Inverse susceptibility 1/χ(T ) of FeSc2S4 (triangles), and FeCr2S4 (circles), re-
spectively. The straight solid lines are linear fits with a Curie-Weiss law χ = C/(T −ΘCW ).
The figure is taken from Ref. [3].

In literature the frustration parameter is defined as f = −ΘCW
TN

[4], where TN is the magnetic transition

temperature. For FeCr2S4 this turns out to be 1.2, where as for FeSc2S4, the value of this parameter

turns out to be more than 1000. To the best of our knowledge, the microscopic understanding of this

qualitatively different behavior has not been attempted till date. Experimental works[3, 2, 1] on this

topic have been reported, also related theoretical work based on model Hamiltonian [5, 6, 7] has been

performed. We carried out first principles calculations to study the root cause behind this dissimilar
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behaviour of those two sulphide spinel from microscopic point of view.

5.3 Results and Discussions

For our DFT-based calculations we have considered three different basis sets, namely, the LAPW

method as implemented in the WIEN2K code, the muffin-tin orbital based Nth-order MTO (NMTO)

method as implemented in the Stuttgart code and the plane-wave basis as implemented in the VASP.

The reliability of the calculation in the three basis sets has been cross-checked.

Both the spinel compounds crystallize in the conventional cubic Fd3̄m symmetry, with lattice pa-

rameters 9.99 Å[1] and 10.50 Å[8], for FeCr2S4 and FeSc2S4 respectively. There is a 5% expansion in

the Sc compound due to large Sc3+ ions (size≈ 0.75 Å) compared to that of Cr3+ ions (size≈ 0.62 Å).

The other free structural parameter i.e. position of S ion is given by 0.259 and 0.255 for FeCr2S4 and

FeSc2S4 respectively [9, 8]. This leads to a trigonal distortion in the BS6 octahedra in the compounds.

For FeCr2S4 the deviation of S-B-S angle from 90◦ is 4.4◦, where as the same for FeSc2S4 is 2.5◦.

5.3.1 Density of States

Fig. 5.2 shows the non spin-polarized DOS calculated using LAPW basis set within the generalized

gradient approximation. The number of plane waves is restricted using the criteria muffin-tin radius

multiplied by kmax yielding a value of 7. The total Brillouin zone (BZ) was sampled with 256 k points

for self consistent calculations.

In order to check the influence of the crystal structure differences between Cr and Sc compounds on

the electronic properties of the crystal structure, we have performed calculations to study the electronic

structure of FeSc2S4 considering crystal structure of FeCr2S4. The top panel of Fig. 5.2 shows the

DOS of FeSc2S4 obtained considering the actual crystal structure in comparison with the DOS obtained

assuming the crystal structure of FeCr2S4. On the other hand, the bottom panel shows the comparison of

DOS between FeSc2S4 and FeCr2S4 both in their actual crystal structure. Focusing on the DOS shown

in the top panel of Fig. 5.2, they look similar to each other although they differ in minute details.
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Figure 5.2 Non spin-polarized total DOS calculated within GGA. Top panel shows DOS of
FeSc2S4 calculated in the actual crystal structure (dark solid line) and in the crystal structure
of FeCr2S4 (light solid line). Bottom panel represents comparison of DOS of FeSc2S4 (dark
solid line) and FeCr2S4 (light solid line). Energy is plotted with respect to the Fermi energy
(EF ). The various orbital contributions are marked for each DOS plots.

For example, the Fe d dominated states at the Fermi level (EF ) are a bit narrower in actual crystal

structure of FeSc2S4 compared to that of hypothetical lattice. Also in the positioning of the empty Sc

levels spanning the energy window of about 1-5 eV differ little bit between the two DOS. On the other

hand, significant differences can be spotted while comparing the DOS of two actual compounds (lower

panel of Fig. 5.2). It can be clearly seen that bandwidth of the Fe d dominated states crossing EF is

substantially increased and also one can notice easily that there is a significant change in the unoccupied

region of the DOS profile. This comparison makes it clear that the difference between FeCr2S4 and

FeSc2S4 arises from the relative energy positions of Cr and Sc with respect to that of Fe. This is more

evident from the spin-polarized band structure calculation which is discussed in next section.
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represent the bands corresponding to down spin channel.

5.3.2 Band structure

Fig. 5.3 shows the comparison of spin-polarized band structures between the two spinel compounds

discussed in this chapter. In spite of the fact that FeSc2S4 does not spin order, such calculations are

useful in understanding the relative positions of Fe and the cation B (Cr/Sc) energy levels taking into

account the spin degrees of freedom. Fe and Cr/Sc d states are split into e, t2 and t2g, eg states, re-

spectively since those ions occupy the tetrahedral and octahedral sites respectively. On top of that,

these states are spin-split also. The Fe d dominated states are completely occupied in the down spin

channel. Considering the up spin channel, One can notice that Fe e states are partially occupied. This

is in agreement with the Fe2+ nominal valence in both the spinel compounds. In FeSc2S4, Sc d states

are empty in both spin channels with little shift in the energy scale between the two spin channels. This

essentially proves the non-magnetic character of Sc3+ in the compound. Looking at the Cr d states at
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the down spin channel, one can see that the states are completely empty. On the other hand, in the other

spin channel i.e. up spin channel, t2g states are occupied and eg states are empty with a spin splitting

of about 2 eV between the two. This proves the ferrimagneic spin arrangements between Fe and Cr

in FeCr2S4 compound. Therefore it has been clearly shown that the difference between two sulphide

spinel compounds arises from the relative energy positions of Cr and Sc with respect to that of Fe.

While the Sc d levels all appear above the Fe d states with little mixing between them, there exists a

rather strong mixing between Fe d and Cr d states in the up spin channel. Fe-Cr mixing causes the

substantial increase in the width of the Fe d dominated states crossing EF (see Fig. 5.2).

5.3.3 Effective Fe-Fe interaction

We have performed NMTO downfolding calculation in order to extract the effective Fe-Fe interaction

in the two spinel compounds. In our downfolding calculations, we have kept active Fe d states and

have downfolded all the other states involving Cr/Sc and S. In the Fig. 5.4 we show Fe dxy Wannier

function for FeCr2S4 and FeSc2S4. It can be clearly seen that central region of the Wannier function is

shaped according to the dxy symmetry, while the tails are shaped according to the integrated out orbital

degrees of freedom, e.g., Cr/Sc and S orbitals. From Fig. 5.4 it can be seen that Wannier function for

Cr compound is much more delocalized compared to that of Sc compound with significant weights at

the Cr sites surrounding the central Fe site. In contrast, the Wannier function for FeSc2S4 is localized

with little weight on Sc sites and only some weight on the neighbouring S sites.

In the effective Wannier function basis of Fe, real-space Hamiltonian is constructed, which is tabu-

lated in Table 5.1 . In doing so we have considered up to second nearest-neighbour (2NN) interactions.

If we focus on the hopping parameters listed in Table 5.1 , we find that the most significant changes

between the hopping parameters of FeCr2S4 and FeSc2S4 are within the t2 (dxy, dyz and dxz) block of the

Hamiltonian. We have noticed that the Fe-Fe nearest-neighbour (NN) hopping integrals are larger than

the 2NN hopping terms for the Cr compound. In fact our calculation reveals that, in case of FeCr2S4

the largest 2NN hopping is about three times smaller than the largest NN hopping term. Interestingly

we have found that reverse case is true for FeSc2S4 compound. The 2NN hoppings are larger than the
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Figure 5.4 Wannier function plot of Fe dxy orbital for FeCr2S4 (left panel) and FeSc2S4 (right
panel). Plotted are the constant value surfaces. Two opposite lobes of the wave functions are
colored differently.

NN hoppings for Sc compound.

Figure 5.5 The NN and 2NN interaction path between Fe atoms. Small dark and light balls
represent B(Sc/Cr) and S atoms, respectively. Big dark and light balls represent Fe atoms
belonging to two FCC sublattices constituting the diamond lattice. The dashed line in black
(dark) and green (light), represent the NN and 2NN paths, respectively. The inset in the
upper-left (lower right) corner shows the overlap of the Wannier functions of Fe dxy placed at
two Fe atoms in FeSc2S4 (FeCr2S4) separated by 2NN (NN)distance.

Two A ions in a typical spinel lattice are connected via A-X-B-X-A path, which is true for both NN

and 2NN A-site ions. This interaction path is shown in Fig. 5.5. The A-site sublattice of spinel structure
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forms diamond like lattice (see Fig. 5.6). Diamond lattice is actually composed of two interpenetrating

face-centered cubic (FCC) lattices. NN interactions connect two A-site ions belonging to two different

FCC lattice, where as 2NN interactions happen between two A-site ions belonging to same FCC lattice.

Figure 5.6 A-site sub-lattice of spinel structure (diamond lattice) consisting of two interpen-
etrating FCC lattices. Dark and light coloured atoms form two FCC lattices separately.

The NN hopping path as marked in Fig. 5.5, includes Fe-B-Fe, Fe-S-Fe, and S-B-S bond angles

of about 60◦, 80◦, and 90◦, respectively, while the corresponding bond angles for the 2NN hopping

paths are found to be close to 120◦, 130◦, and 90◦, respectively† . Therefore it is important to note that

the direct Fe-B hybridization becomes important for NN interaction. On the other hand for the 2NN

interaction, the anion mediated (Fe-S-Fe) exchange becomes important. Since for FeSc2S4 the Fe-Sc

hybridization is much less, NN interaction in this compound becomes less dominant compared to 2NN

interaction. The fact that the NN interaction is strong in FeCr2S4 and the 2NN interaction is strong in

FeSc2S4 is supported by the plot of the Wannier functions for two NN Fe sites (top left panel of Fig.

5.5) and two 2NN Fe sites (bottom right panel of Fig. 5.5). One can easily find form Fig. 5.5, a clear

overlap of Cr-like tails between two Wannier functions for FeCr2S4. On the other hand, for FeSc2S4,

the S-like tails point to each other.

†These numbers vary slightly between FeCr2S4 and FeSc2S4.
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NN 2NN

m,m′ [ 1
4

1
4

1
4 ] [0 1

2
1
2 ] [ 1

2 0 1
2 ] [ 1

2
1
2 0]

1,1 -3 60 63 43 12 31 43 12 31 -16 -13 3

2,2 -3 60 63 -16 -13 3 43 12 31 43 12 31

3,3 11 10 1 -6 -1 5 -6 -1 5 -21 2 23

4,4 -3 60 63 43 12 31 -16 -13 3 43 12 31

5,5 11 10 1 -16 1 17 -16 1 17 -1 -2 1

1,2 -10 -9 1 -22 11 33 46 17 29 22 -11 33

1,3 -22 -18 4 16 8 8 16 8 8 -11 -22 11

1,4 -10 -9 1 46 17 29 -22 11 33 22 -11 33

1,5 0 0 0 -18 3 21 18 -3 21 0 0 0

2,3 11 9 2 4 11 7 7 -7 0 -24 -1 23

2,4 -10 -9 1 22 -11 33 -22 11 33 46 17 29

2,5 -19 -16 3 -7 -19 12 23 5 18 5 8 3

3,4 11 9 2 -7 7 14 4 11 7 24 1 23

3,5 0 0 0 9 -2 11 -9 2 11 0 0 0

4,5 19 16 3 -23 -5 18 7 19 12 -5 -8 3

Table 5.1 Hopping matrix elements (in meV) of FeSc2S4 and FeCr2S4 (first two values of
each column, respectively) and the magnitude of their differences (third value of each col-
umn) for the NN [ 1

4
1
4

1
4 ] and 2NN [0 1

2
1
2 ], [ 1

2 0 1
2 ], [ 1

2
1
2 0]. The matrix elements are listed for

distinct entries only. 1, 2, 3, 4, and 5 represent the five d orbitals, dxy,dyz,d3z2−1,dxz, and
dx2−y2 , respectively.

Fe-Fe exchange interactions

One can estimate the exchange interactions from the hopping integrals through the use of a super-

exchange like formula. However this kind of approach relies on the knowledge of the appropriate

charge-transfer energy, which is indeed difficult to estimate because of complicated hopping paths.

The alternate way to compute the effective magnetic exchange interactions, is in terms of total energy
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calculations of different spin arrangements and mapping the total energies to an Ising-type model.

We considered the second approach to estimate the Fe-Fe magnetic exchange interactions in the two

sulphide spinel compounds. For this purpose, spin-polarized calculations were carried out in a plane

wave basis as implemented in VASP and with the choice of the GGA exchange-correlation functional.

Our calculations shows that for FeSc2S4, J1=-0.01 meV and J2=-0.37 meV with J2/J1=37, where J1 and

J2 are the magnetic exchange interaction between NN and 2NN Fe ions respectively. This proves that

2NN exchange interaction dominates over NN exchange interaction which has already been inferred

form our estimated hopping integrals. This result is also in agreement with the findings of neutron

scattering measurements [2]. On the other hand, our calculation shows that for FeCr2S4 J1=6 meV and

J2=2.5 meV, both the exchange interactions being ferromagnetic in nature. For Cr compound he NN

interaction dominates over the 2NN neighbour interaction. For Cr compound it turns out that J2/J1=0.4,

which is in sharp contrast with that of Sc compound.

5.3.4 Effect of spin-orbit coupling

Fe Cr/Sc Anisotropy

Orbital spin Orbital spin energy

moment moment moment moment (meV/Fe)

FeSc2S4 -0.14 -3.44 0.0 0.05 6

FeCr2S4 -0.13 -3.27 -0.03 2.69 10

Table 5.2 Magnetic moments of Fe and Cr/Sc ions in µB and anisotropy energy in meV/Fe.

Due to the presence of unquenched orbital degrees of freedom on the Fe sites, the importance of

the spin-orbit coupling (SOC) in these compounds has been discussed in the literature [5, 6]. Relative

strength of SOC parameter λ is an important quantity in this context. Table 5.2 shows the magnetic

moments of Fe and Cr/Sc ions, obtained from GGA+U+SO calculations carried out for both FeCr2S4

and FeSc2S4 structures. These calculations are done within LAPW basis sets as implemented in Wien2k
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code, with following U and J value, U=2.5eV and J=1eV. From our calculations we got rather large

moment of 0.13 - 0.14 µB at Fe site for both FeSc2S4 and FeCr2S4, with the spin moment pointing

along the same direction as that of orbital moment. Such values of orbital moments are surprisingly

large given the fact that the orbitally active levels of Fe are e levels. The reason behind this has been

discussed in previous chapter, as the finite coupling between Fe e and empty t2 orbitals. We have

also evaluated magnetocrystalline anisotropy energy, which is obtained as the total energy difference

between the calculations with the spin quantization along [001] and [110]. In our calculation it has been

found that the anisotropy energy is approximately two times larger for FeCr2S4 compared to FeSc2S4.

This strongly indicates stronger spin-orbit interaction in Cr compound compared to Sc compound. The

strength of the effective spin-orbit interaction depends on the energy level separation (∆) between Fe

e and t2. From NMTO downfolding calculations we have estimated ∆ for both FeSc2S4 and FeCr2S4,

which are 0.46 eV and 0.20 eV respectively. The spin-orbit coupling parameter is given by, λ ∼ 6λ 2
0

∆
,

where λ0 is the atomic spin orbit coupling constant, estimated to be 0.01 eV. Next using estimated

values of ∆ for both FeSc2S4 and FeCr2S4, we get λSc = 1.3 meV and λCr = 3 meV. If we consider

only the dominant magnetic interaction for each of the two compounds then we get λ

J � 1 in FeCr2S4

compound and λ

J � 1 in FeSc2S4. These two situations will give rise to very different ground states,

an magnetically ordered state for λ

J � 1 and a spin orbital singlet for λ

J � 1 [5, 6].

5.4 Conclusion

We have carried out DFT calculations to provide a microscopic understanding of the dissimilar behavior

of two spinel compounds, FeSc2S4 and FeCr2S4. Our study reveals that this difference in behavoiur

originates from the difference in the hybridization between Fe d states and B (B=Cr/Sc) d states and S

p states. Our study shows that this not only affects the magnitude of magnetic exchanges but also the

relative importance of different magnetic exchanges. In our calculation we got a contrasting value of

J2/J1 of 37 in the case of the Sc compound to a value of 0.4 in the case of the Cr compound. Not only

that, the J’s are antiferromagnetic for the Sc systems and ferromagnetic for the Cr system. This leads
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to important frustration effects in the FeSc2S4 which are absent in the FeCr2S4.
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Chapter 6

Electronic and optical properties of spinel

CuIr2S4
†

6.1 Introduction

One of the most studied topics in condensed matter physics in last few decades is metal-insulator

transition (MIT). After the discovery of high-Tc cuprates[1] and manganites[2], attention of researchers

hs been drawn to this phenomenon due to it’s vast application possibilities. It is a commonly occurring

phenomenon among transition-metal oxides and sulphides, although its origin seems to be varied. For

example in V2O3, MIT occurs due to correlation induced enhancement of crystal field splitting[3]. On

the other hand in case of magnetite Fe3O4, in literature[4] it has been discussed that the root cause

behind the MIT shown by this compound is correlation assisted charge-ordering transition between

Fe2+ and Fe3+. Many of the compounds belonging to spinel class exhibit MIT. These compounds

show complicated ordering at low temperature with associated MIT from a high-temperature (HT)

metallic phase. CuIr2S4 is one such spinel compound which has been reported to undergo a first-order

MIT near 230 K simultaneous to structural phase transition [5].

†This chapter is based on Phys. Rev. B 79, 113104 (2009)
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Figure 6.1 A view of the 3D configuration of the Ir ions, emphasizing the orientation of
the hexagonal rings perpendicular to the [111] cubic direction. Red and blue colour atoms
represent Ir3+ and Ir4+, respectively. The dimerized Ir-Ir bonds are indicated with light-blue
cylinders. In the projection, the [111] cubic direction is tilted by approximately 18◦ out of
the paper plane to create a 3D impression of the stacking and to provide a prospective view
of both types of octamers. The charge-ordering pattern is also indicated. The Ir3+ hexagons
lie essentially in the [111] planes whereas the Ir4+ hexagons lie in the (1,1,1̄ ) planes. Spin
dimerization of the Ir4+ ions takes place along the two orthogonal cubic directions [101] and
[1,0,1̄ ]. This figure is taken from Ref. [7].

6.2 Motivation of the present work

HT phase of CuIr2S4 has a cubic spinel structure with Fd3̄m symmetry [6]. On lowering of temper-

ature the system undergoes reduction of symmetry. The low-temperature (LT) structure was initially

characterized to be tetragonal[6] (space group I41/amd), although the study also reported observation

of additional Bragg peaks which were not indexed. The neutron measurement by Radaelli et. al.[7]

revealed a fascinating octamer ordering in LT CuIr2S4 with a triclinic space group (see Fig. 6.1). The

octamer ordering consists of tetramerization of Ir-Ir bonds with short, long, and intermediate bond

lengths giving rise to octamer clusters, one of which exhibits alternation of Ir-Ir bond lengths.

Croft et. al.[8] has explained formation of such superstructures in terms of formation of corre-
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lated spin singlet dimers. Similar explanation can also be found in case of VO2[9]. NMR experiments

reports[10] Cu to be in monovalent state in CuIr2S4. Therefore if one assumes S to be in divalent state

in this compound then Ir sites are nominally in the 3.5+ state, which is a mixed valent state. At low tem-

perature, Ir ions are therefore expected to charge disproportionate into Ir3+ and Ir4+. Ir3+ consists of

completely filled t2g states, where as Ir4+ ions have two filled and one half filled t2g states. Croft et. al.

interpreted that Ir4+ ions with their S=1/2 configuration form correlation assisted spin singlets which

lead to alternation of Ir4+-Ir4+ bond lengths, while Ir3+-Ir3+ bond lengths remain uniform. It should be

noted that while in the case of 3d transition metal based oxide systems like VO2 or Ti4O7, correlation

assisted spin singlet formation is of much relevance, in the present case, the ion under study is Ir, which

is a 5d element. Furthermore, S being in the 3p state with more extended wave functions compared to O

2p state is expected to give rise to wide bands with much weaker correlation effect. As a consequence,

there exists an alternative explanation of MIT, proposed by Khomskii and Mizokawa,[11] in terms of

the orbitally driven Peierls state. Ir is the B-site ion in the spinel compound CuIr2S4. As discussed

in the crystal structure of spinel compounds section, this B-site ions form chains running in cris-cross

manner through out the crystal. Significant overlap of Ir d orbitals aligned along a given chain direc-

tion and negligible in other chain directions leads to formation of essentially one-dimensional bands

and with proper filling lead to a Peierls-type effect.

In the view of two different ideas, we carried out first principles calculations to study the MIT in

CuIr2S4. Results of such a first principles calculations may provide indications about the appropriate

scenario of the MIT observed in this spinel compound. There have been reports of measurement of op-

tical spectrum on single crystals[12] conducted on both HT and LT structures. The changes observed in

the optical conductivity and reflectivity spectra between the high-temperature and low-temperature data

are essentially caused by the reconstruction of band structure following the structural changes from high

temperature to low temperature. We have studied the influence of such changes in optical properties in

terms of electronic structure calculations, using density-functional theory (DFT) calculations.
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6.3 Results and Discussions

6.3.1 Crystal structure

It is already mentioned that CuIr2S4 undergoes MIT near room temperature (230 K). For our calculation

of HT cubic structure of CuIr2S4 we considered Fd3̄m symmetry with lattice parameter a=9.847 Å and

S ion position (free parameter u of cubic spinel structure) as 0.385 [6]. For LT structure, the symmetry

is triclinic (P1̄)[13, 14, 15]. The LT unit cell corresponds to four times of that of HT phase and the

superstructure arises due to the large displacement of the Ir sites. As discussed in previous section, at

low temperature phase of CuIr2S4, Ir ions exist in two different classes, Ir4+ (dimerized Ir) and Ir3+

(non-dimerized Ir). There are eight independent Ir atoms in the low temperature phase. Out of them

four form very short metal-metal bonds of average bond length 3.0 Å with each other across shared

octahedral faces. All the other Ir-Ir distances being between 3.43 and 3.66 Å (se Fig. 6.1). The two

types of Ir-dimerized (Ir4+) and non-dimerized (Ir3+) are marked in blue and red, respectively, in Fig.

6.1. Atoms of each type are arranged in octamers, groups of 8 octahedra, related in pairs by the centre of

symmetry. Such a structure can be thought of as planar hexagonal rings with two additional octahedra

attached at opposite sides, above and below the hexagon (bi-capped hexagonal rings). The Ir ions (with

the spin values of 1/2) in the Ir4+ octamers exhibit drastic alternations of Ir-Ir distances (3.0 Å and 3.5

Å ), which results in spin dimerization. On the other hand, the Ir-Ir distance in Ir3+-octamers (S = 0)

remain uniform.

6.3.2 Density of states

The calculations have been carried out with no shape approximation to the potential and charge density.

The basis has been chosen to be LAPW as implemented in Wien2K code. For the number of plane

waves, the criterion used was muffin-tin radius multiplied by kmax (for the plane wave) yielding a value

of 7. The number of k points used in the irreducible part of the Brillouin zone was 104 for the self-

consistent calculation and 256 for the optical calculation.

Fig. 6.2 represents DOS as obtained in generalized gradient approximation (GGA) of the exchange-
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Figure 6.2 The total and orbital projected DOS of CuIr2S4 for the high temperature (left
panels) and low temperature (right panels) phases, respectively. The panels from top to bot-
tom represent the total DOS, DOS projected on to Cu-d, Ir-d and S-p. The insets in the
high-temperature DOS show the band structure and DOS close to EF exhibiting predominant
1D-like features. The bands have been plotted along the high symmetry directions [011]-
[000]-[110]. The black and the gray lines in panel corresponding to Ir-d projected DOS
for the low temperature represent the DOS corresponding the dimerized and undimerized Ir
atoms, respectively.

correlation functional. Let us first discuss the DOS of high temperature structure (left panel of Fig.

6.2). One can find significant hybridization between delocalized Ir-5d and S-3p giving rise to wide d-p

hybridized bands spanning the energy range of about 12 eV, from 8 eV below the Fermi energy (EF )

to 4 eV above the Fermi energy. The Cu-d derived states localized at an energy of about 2.5 eV below

EF remain completely occupied in agreement with earlier band-structure calculation[16] and NMR

studies[10]. There are distinct indication (see inset of Fig. 6.2) of formation of one dimensional like

features near the EF , in case of Ir-d projected DOS. This gets merged to a broad filled manifold of Ir

t2g states on moving to energies further away from EF . Formation of such 1D-like chains has also been

observed in some of spinel compounds, like ZnV2O4[17, 18]. In our case, due to the extended character

of the Ir-5d orbital the direct overlap of t2g orbitals which point to each other along a chain direction,

gives rise to a bandwidth of about 4 eV. The crystal field splitting of Ir-t2g and Ir-eg states is about 1 eV.
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Ir-eg states remains empty, which confirms the 3.5+ valence of Ir, with Cu in the monovalent and S in

the divalent state.

Let us now study the low temperature DOS carefully. The general features of the DOS remain more

or less the same between the HT and LT, significant changes happen close to EF . The structural data

at the LT phase show there are two inequivalent classes of Ir ions. One of the two Ir classes exhibits

alternating Ir-Ir short and long bonds and another forms uniform Ir-Ir bond. In Fig. 6.2 we have plotted

Ir-d DOS for both the classes, referred as dimerized and nondimerized respectively. one can find easily

the formation of occupied bonding and unoccupied antibonding-like states close to EF for dimerized

Ir’s. The projected DOS on undimerized Ir’s also exhibits this same feature with larger weight on

bonding subbands compared to antibonding subbands. The bonding-antibonding feature, however, is

more pronounced with almost equal weights between bonding and antibonding subbands in case of

dimerized Ir’s. This results in charge disproportionation between undimerized and dimerized Ir ions

with charges 5.5+δ and 5.5-δ with δ = 0.05. In case of a 3d transition metal oxide system like Ti4O7

this charge disproportionation is found to be nearly complete with Ti in 3+ and 4+ states. This is in

contrast with the small value of charge disproportanation of Ir which is a 5d element. This special

feature points to a very delocalized character of Ir together with 1D-like properties. The bonding-

antibonding splitting originated due to bond tetramerization in Ir chains with an alternation of Ir3.5−δ

/ Ir3.5−δ / Ir3.5+δ / Ir3.5+δ /· · · gives rise to a insulating solution of electronic structure with GGA as is

evident from the DOS in Fig. 6.2.

6.3.3 Estimation of band gap and effect of Coulomb correlation

From our first principles calculations the band gap value of this system is evaluated as 0.02 eV, which

is in agreement with estimates obtained from photoemission study[19]. The gap value, as obtained

within GGA, is found to be highly sensitive on the structural details, which is expected since the gap

originates from structural changes. In view of this, it would have been preferable to carry out structural

optimization. This is, however, hindered by the large unit cell and extremely low symmetry of the low

temperature structure.
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In order to check the effect of correlation in this spinel compound, we have carried out a LDA+U

calculation. In this calculation the spin arrangement of Ir ions considered is of antiferromagnetic(AFM)

type. Such an spin arrangements is considered because of the fact that the true spin singlet state without

any long range order is not possible to achieve within a LDA+U kind of approach. The AFM spin

alignment therefore is the closest approximation to assume. This calculation, however, leads to a

nonmagnetic solution with vanishingly small magnetic moments at both the dimerized and undimerized

Ir sites. This situation is quite different from that of Ti4O7 case [20]. There a similar kind of approach

gave rise to distinctly different magnetic behaviour among Ti3+ and Ti4+ like ions. Our first principles

results are in contradiction to the idea of correlation assisted localized spins at Ir4+ ions forming spin

singlets. Hence it confirms the expectation of the correlation effect to be much weaker in the case of

an Iridium-sulphide system with extended, delocalized 5d and 3p states, compared to 3d metal-oxide

systems.

6.3.4 Calculation of optical properties
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Figure 6.3 The various allowed optical transitions for photonic energy ranging from 0 to 3
eV in the high-temperature (left panel) and low-temperature (right panel) phases.

Fig. 6.3 shows the various possible optical transitions considering the GGA electronic structure at

HT and LT for photonic energy ranging from 0 to 3 eV. It is evident from the Fig. 6.3 the low energy

transitions are dominated by Ir t2g-t2g transitions, which are marked as I and II in the figure. On the
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other hand, the higher energy transitions (marked as III) primarily originate from Ir t2g-eg transition. In

addition to this, Cu-d-Ir t2g transition also contributes to that peak. These transitions are allowed due

to appreciable hybridization between S-p and Cu-d and ir-d states. In moving from HT to LT structure,

marked changes happen in the details of the low energy transitions due to opening of a band gap and

formation of bonding and antibonding subbands.

While discussing the optical properties of FeCr2S4, we have already mentioned how theoretically

optical conductivity and reflectivity can be calculated. Employing the same scheme, we have also cal-

culated the optical properties of CuIr2S4. Fig. 6.4 shows the computed reflectivity obtained using the
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Figure 6.4 Calculated reflectivity spectrum (solid line) in comparison with the experimental
data shown in the dotted lines for the high-temperature (left panels) and low-temperature
(right panels) phases. I, II, and III indicate the prominent structures corresponding to optical
transitions marked in Fig. 6.3.

joint DOS and the dipole matrix elements. In case of HT phase Drude contribution is added in order

to take into account the intraband transitions due to the metallic character of the electronic structure.

The added Drude component suppresses a bit the low energy near EF Ir t2g-t2g transition marked as “I”

in Fig. 6.3. Although it does not mask it completely and traces of it are still visible in the reflectivity

spectra. One can also find the presence of two other peaks marked as structures “II” and “III” orig-

inating primarily from transitions relating to Ir t2g states appearing far away in energy to near EF t2g

states and Cu-d to Ir-t2g transitions, respectively. We have found in our calculation that in addition to
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these transitions the Ir-t2g to empty Ir-eg transition contributes to both the structures. In Fig. 6.4 we

have made a comparison of the theoretically evaluated reflectivity spectra with experimentally mea-

sured spectra[12]. One can easily notice that the computed spectra are in reasonably good agreement

with the experimental spectra. Although there are certain differences in details; e.g., the structure I

in experimental spectra is found to be totally masked by the Drude contribution, while structures II

and III are shifted a bit to higher energy (by about 0.2 eV) compared to theoretical spectra. Moving

to the low-temperature reflectivity spectrum, shown in the right-hand side panels of Fig. 6.4,the very

first thing one can notice that the low-temperature reflectivity drops down to about 60% signaling the

insulating character of the LT electronic structure. In LT phase structure I becomes more pronounced

which is contributed by the transition between Ir bonding and antibonding subbands. At the same time

the structures II and III remain more or less similar to the HT structure. The dip preceding structure

II is more pronounced in the case of HT spectra compared to LT spectra, which primarily arises due

to the fact that the formation of bonding-antibonding bands in LT pushes the quasi-1D-like portion of

the t2g manifold more toward the broad filled part of the t2g manifold, compared to the HT electronic

structure.
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Figure 6.5 Absorptive part of the calculated diagonal optical conductivity of CuIr2S4 at high-
temperature and low-temperature phases, respectively. Figure convention is same as Fig. 6.4

Fig. 6.5 shows the real part of the computed diagonal conductivity for HT and LT phases of CuIr2S4

in comparison with experimental spectra. The diagonal conductivity follows the same trend as the cor-
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responding reflectivity spectra. Experimental report associates Ir t2g-eg transitions to the peak II, while

our first-principles calculations show that peak to originate primarily from the transition related to Ir-

t2g-Ir-t2g, with the Ir t2g-eg transition contributed spectral weight moved mostly to structure III. An

optical gap of about 60 meV is obtained from our calculated optical spectrum. This is not apparent

in the experimental spectrum presumably because of instrumental broadening. The dc resistivity mea-

surements, however, have yielded an activation energy which is at the most 47 meV [12], at a much

better agreement with our calculated value of 20 meV, obtained from band structure.

6.4 Conclusion

We have studied the electronic and optical properties of spinel compound CuIr2S4 at high-temperature

and low-temperature phases using the first-principles DFT calculation. Our study finds that correlation

has very less effect on the MIT observed in this spinel compound. The transition from HT to LT crystal

structure with complex ordering pattern, therefore, may be rationalized in terms of formation of one-

dimensional bands which gives rise to an orbitally driven Peierls state. Our theoretically computed

reflectivity and conductivity spectra based on the GGA electronic structure are in good agreement with

measured spectra. We find the electronic structure to be highly sensitive on the crystal structure data.

The observed differences in the details between the theoretical and experimental spectra, we believe,

therefore can be improved in terms of better refined crystal structure data at low temperature.
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Chapter 7

Orbital ordering in spinel compound with

two orbitally active sites†

7.1 Introduction

Through the discussions of the previous chapters, it has been clear that spinel compounds have attracted

considerable attention in recent times due to the intricate interplay among charge, spin, and orbital

degree of freedom, giving rise to fascinating properties. In literature several of the spinel compounds are

reported to undergo structural transitions from cubic to tetragonal symmetries, accompanied by orbital

ordering as well as magnetic ordering at low temperature[1]. It is interesting to note that theoretical

investigations have been mostly restricted to spinels having either an orbitally active B site or A site.

For example, MnV2O4[2]has the orbitally active B site, V3+. We have seen in chapter 3, V3+ as B-site

ion in spinel compound, has d2 configuration in a threefold degenerate manifold of octahedrally split

t2g, which gives rise to orbital degeneracy. Similar situation can be found in case of another spinel

compound ZnV2O4 [3]. On the other hand in chapter 4, we have studied FeCr2S4 which exhibits

long-range orbital ordering [4]. There the A-site ion Fe has the orbital degree of freedom. In case

of FeCr2S4, d6 configuration of Fe2+, with a local S = 2 moment and one hole in twofold degenerate

†This chapter is based on Phys. Rev. B 84, 235112 (2011)
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manifold of tetrahedrally split e states, gives rise to the orbital degeneracy. Similar orbital degree of

freedom at A-site ion, has been reported in case of FeCr2O4 [5] also.

Fe2+ V3+

Figure 7.1 Orbital degeneracy of octahedrally and tetrahedrally split Fe2+ and V3+ d levels
respectively in spinel compound

It can be interesting to study a case where both the A and B site have orbital degree of freedom.

Such a situation arises in case of FeV2O4, where A and B site ions are Fe2+ and V3+ respectively.

7.2 Motivation of the present work

FeV2O4 is reported[6] to exhibit two tetragonal phases (space group I41/amd), one at relatively higher

temperature (140-110 K) and another at relatively lower temperature (<70 K). The symmetry above

140 K is cubic with Fd3̄m space group. It is interesting to note that for the high-temperature tetragonal

(HT-T) phase the c axis is shorter than the other axis (a = b), where as low-temperature tetragonal

(LT-T) phase exhibits the opposite trend, with the c axis being longer than the other axis[7]. The

opposite nature of the c/a ratio in the HT-T and LT-T phases is accommodated by the presence of an

orthorhombic phase in the intervening temperature range of 110-70 K. The presence of two tetragonal

phases of two different shapes is in contrast to the situations of only A site or only B site orbitally

active spinels, for which the tetragonal phase is either compressed as in MnV2O4 [2] and ZnV2O4 [3]

or elongated as in Mn3O4 and CoMn2O4[8, 9] . It is interesting to study from microscopic point of view

the orbital ordering pattern of such a spinel compound with two orbitally active ions, and the driving
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mechanism behind the existence of two different tetragonal phases, one at high temperature and other

at low temperature.

7.3 Crystal structure
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Figure 7.2 The crystal structures of HT-T (left side panle) and LT-T (right side panel) phases
of FeV2O4. O sites are indicated with small balls, while Fe and V sites are indicated with
grey and red medium-sized balls. The cubic (a, c) and tetragonal (A, C) setting of lattice
parameters are related by a =

√
2A and c = C, giving rise to c/a = 0.988 and 1.016 for HT-T

and LT-T structures, respectively. The VO6 and FeO4 structural units for both structures are
shown separately, along with the various bond lengths and bond angles.

Fig. 7.2 shows the unit cell of the two tetragonal phases of FeV2O4. Apart from the HT-T and

LT-T phases, FeV2O4 also exists in cubic (above 140 K) and orthorhombic (110-70 K) phase. We

have carried out calculations only on the tetragonal phases. The cubic (a, c) and tetragonal (A, C)

setting of lattice parameters are related by a =
√

2A and c = C. This gives rise to c/a = 0.988 and

1.016 for HT-T and LT-T structures, respectively. Therefore at high temperature the tetragonal phase

is compressed and low temperature tetragonal phase is elongated. In both the tetargonal phases VO6

octahedra are compressed. V-O bond length along the 〈001〉 direction being smaller than that along

the 〈100〉 direction. In addition to this, the octahedra exhibits trigonal distortion, which makes the O-

V-O angle deviate from 90◦. Interestingly FeO4 tetrahedral unit behaves differently in HT-T and LT-T

phases. FeO4 tetrahedral unit is elongated in the LT-T phase, where as in HT-T phase the scenario is
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opposite ie., FeO4 tetrahedral unit is compressed there. The tetragonal distortion of FeO4 tetrahedra is

measured in terms of O-O bond lengths (dO−O) along 〈110〉 and 〈101〉 directions, dO−O〈101〉
dO−O〈110〉 . Value of

this distortion is ∼0.99 for the HT-T phase and ∼1.05 for the LT-T phase. While discussing the crystal

field splitting of Fe and V d levels in FeV2O4, we shall again come to this structural distortion issue.

7.4 Results and Discussions

Calculations are carried out in the linear augmented plane wave basis set as implemented in the Wien2K

code, as well as the muffin-tin orbital(MTO) based Nth order MTO (NMTO) method as implemented in

the Stuttgart code. The density of states and electron-density plots as well as structural optimization are

obtained with LAPW calculations with no shape approximation for the potential. For the LAPW calcu-

lations, the number of plane waves is restricted using the criteria of muffin-tin radius multiplied by kmax,

yielding a value of 7. The Brillouin zone is sampled with 196 irreducible k points for self-consistent

calculations. The exchange correlation functional is chosen to be that of generalized gradient approx-

imation (GGA). Strong electron-electron correlation effects are expected to be present in the unfilled

d shell of transition metal sites of a transition metal oxide spinel, which are insufficiently captured

by GGA. It is reported that methods like self-interaction-corrected local spin density[10] or hybrid

functional[11] have been used to include correlation effects in spinels. In our calculations, the missing

Coulomb interaction beyond GGA is supplemented through additional on-site Coulomb interaction, ex-

pressed in terms of Coulomb U and the Hund’s rule coupling, JH through GGA + U calculations[12].

For calculations including spin-orbit coupling (SOC), it is included in scalar relativistic form as a per-

turbation to the original Hamiltonian. The NMTO-downfolding calculation is used to determine the

crystal field splitting at Fe and V sites. For this purpose, NMTO-downfolding calculations are carried

out keeping only the Fe-d and V-d states active and downfolding all the other states, including O-p

states. The on-site block of the real-space Hamiltonian in the Fe-d and V-d bases gives the crystal field

splitting.
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7.4.1 Crystal field splitting

x
2
-y

2

3z
2
-1

yz, xz
xy

0.47 eV

0.03
eV

0.02
eV x

2
-y

2
3z

2
-1

yz, xz

xy

0.51 eV

0.27
eV

0.04
eV

1
23

4
50.11

eV

0.04
eV

1.12 eV

1
23

4
50.28

eV

0.09
eV

2.18 eV

Figure 7.3 The crystal field splittings of Fe-d (top panels) and V-d (bottom panels) states,
computed by the NMTO-downfolding technique. The left and right panels correspond to
plots for HT-T and LT-T respectively. For V, due to mixed d characters, the positions of
levels |1〉 · · · |5〉 are shown.

As discussed earlier, the NMTO-downfolding calculation is used to determine the crystal field

splitting at Fe and V sites, which is shown in Fig. 7.3. Let us first consider the crystal filed splitting at

Fe site. The tetragonal distortion of FeO4 tetrahedra, which is ∼0.99 for the HT-T phase and ∼1.05 for

the LT-T phase (see section 7.3), lifts the degeneracy between two e states. Due to different nature of

this distortion in HT-T and LT-T phase, 3z2−r2 remains below x2−y2 for HT-T and reverse happens in

case of LT-T. The tetragonal distortion also leads to splitting within t2 states, with doubly degenerate yz,

xz states and singly degenerate xy. The relative positioning of the states is shown in Fig. 7.3. Focusing

on the V-d-derived states, due to the octahedral splitting V-d levels get split into two major groups eg

and t2g with the later being lower in energy. The trigonal distortion coupled with tetragonal distortion

not only lifts the degeneracy of V-d states completely but also mixes them. The lowest three levels

(referred to as |1〉, |2〉, |3〉) are given by predominant contributions of xy , yz, and xz characters, as listed
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below for HT-T and LT-T:

|1〉HT = −0.239|xz〉+0.969|xy〉+0.050|3z2− r2〉

|2〉HT = −0.060|x2− y2〉−0.998|yz〉

|3〉HT = 0.970|xz〉+0.240|xy〉−0.020|3z2− r2〉

|1〉LT = −0.239|yz〉+0.970|xy〉

|2〉LT = 0.119|x2− y2〉+0.990|xz〉

|3〉LT = 0.970|yz〉−0.238|xy〉+0.025|3z2− r2〉

7.4.2 Density of states within GGA

Figure 7.4 GGA DOS projected onto Fe-d (left panel) and V-d (right panel) states for HT-T
(top panel) and LT-T (bottom panel). Contributions of 3z2− r2 , x2− y2 , xz, yz, and xy are
represented by black, cyan, dashed blue, dashed orange, and shaded gray regions respectively.

Fig. 7.4 shows the spin-polarized density of states (DOS) calculated within GGA corresponding to



7.4 Results and Discussions 104

HT-T and LT-T phases, projected on to Fe-d and V-d states. According to magnetic measurements, the

magnetic ordering with anti-parallel alignment of Fe and V spins takes place at TC ≈ 110 K. The HT-T

phase is, therefore, in paramagnetic (PM) state. In PM state for a transition metal oxide compound,

the local moment at transition metal sites orient randomly. Within periodic DFT calculations, as in the

present study, it is not possible to simulate the PM state with randomly oriented local moments. Hence,

we have carried out spin-polarized calculations for both HT-T and LT-T phases, which is expected to

provide knowledge of correct spin states of Fe and V and correct occupations of various d levels in the

presence of local moments. This gives rise to ferrimagnetic alignments of Fe and V moments, which is

in accordance with experimental observation[6] of ferrimagnetism at low temperature. We show DOS

of majority spin channel of V and minority spin channel of Fe, as the states in the other spin channel are

either completely empty or completely occupied (see Fig. 7.1). Focusing on the Fe-d-derived states,

one can find clear grouping of states, one around Fermi energy (EF ) and another above EF , at ∼ 1 eV.

The first and second grouping are of e and t2 characters of Fe-d states respectively. Moving to the V-d

derived states, as expected from crystal field splitting, there are two major grouping of states, eg and

t2g, with later being lower in energy. The DOS also shows that V-d states gets mixed among themselves

substantially.

7.4.3 Calculation within GGA+U

Fig. 7.5 shows the GGA+U DOS for Fe-d and V-d projected states, respectively. We have carried out

calculations considering several choices of U values. The calculations presented here, are carried out

with choice of U values of 4.5 eV at Fe and V sites and JH is chosen to be 1 eV. We have seen that

variations of U values do not change the essential results related to orbital ordering, though they do

affect the details, for example, the size of the gap. The above choice of U values leads to an insulating

solution for both HT-T and LT-T phase. From theoretical point of view, the effect of U makes the more

occupied states completely occupied and less occupied states empty. Therefore in the minority spin Fe

3z2− r2 states get completely occupied and x2− y2 states become completely empty for HT-T phase.

The reverse scenario happens in LT-T phase, there x2− y2 states gets fully occupied, leaving 3z2− r2
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Figure 7.5 GGA + U DOS projected onto Fe-d (minority spin channel) (left panel) and V-d
(majority spin channel) (right panel) states for HT-T (top panel) and LT-T (bottom panel).
The conventions of different line styles are the same as in Fig. 7.4

states completely empty. This leads to a ferro-orbital ordering of x2− y2 type with the hole residing in

the x2− y2 orbital in the HT-T case and of 3z2− r2 with the hole residing in the 3z2− r2 orbital in the

LT-T case, as shown in Fig. 7.6.

The low-energy states of V-d GGA+U DOS show the major peaks corresponding to the mixed t2g

states, |1〉, |2〉 and |3〉, which get filled by two d electrons of V. The corresponding orbital ordering at

the V site is shown in Fig. 7.7. This ordering looks very similar to what we find in case of MnV2O4 (see

Fig. 3.5). Like MnV2O4, in case of FeV2O4 also, it represents a ferro-orbital ordering with formation

of orbital chains in which the orbital rotates from one site to another both between and within the chain.

Our calculations show that the rotation of orbital happens due to the presence of a co-operative type of

local trigonal distortion at the V site, which we find in case of MnV2O4 also.
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Figure 7.6 The plot of charge density calculated within GGA + U, demonstrating the orbital
ordering at the Fe site for HT-T (left panel) and LT-T (right panel).

Figure 7.7 The plot of charge density calculated within GGA + U, demonstrating the orbital
ordering at the V site for HT-T (left panel) and LT-T (right panel). The arrows mark the
rotation of the orbitals as one moves to neighbouring V sites within a given orbital chain,
while the solid and dashed lines mark the orbital chains.

7.4.4 Spin-Orbit interaction

The spin-orbit coupling (SOC) has been often considered to play an important role in orbital ordering in

spinel compounds[13]. It has been seen that SOC within the t2g manifold produces orbital polarization

for tn
2g configurations with n = 1, 2, 4, 5 [14]. For V-based spinel compounds like MnV2O4 with two
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electrons in the t2g manifold, the orbital moment is found to be significant in our calculation . The

counterintuitive and rather large orbital moment has been reported for e levels of Fe in FeCr2S4. We

explain that this happen through coupling with empty Fe t2 orbitals. Therefore, in order to probe the

effect of SOC, we carried out GGA + U + SO calculations. The orbital moments at the Fe site are

found to be∼0.11-0.12 µB pointed in the same direction as the spin moment of magnitude∼3.4-3.5 µB

, while that at V site is found to be ∼0.09-0.1 µB directed in the opposite direction of the spin moment

of magnitude ∼1.6-1.7 µB. This is in agreement with more than half-filled and less than half-filled

d occupancies of Fe and V, respectively. Since our calculation shows significant orbital moments at

both Fe and V sites, we investigate the possible role of SOC in the structural aspects. For this purpose,

we carried out GGA + U + SO calculations considering tetragonal structures of varied c/a ratios, from

values less than 1 to values greater than 1. For each c/a ratio, all the atomic positions as well as

volume are optimized. Two sets of calculations are carried out, one with the spin quantization axis

pointed along the [001] direction and another with the spin quantization axis pointed along the [110]

direction. The result of these several optimization calculations is summarized in Fig. 7.8. It should

be noted that calculated total energies at T = 0 K showed the c/a > 1 structure to be more stable with

spin quantization axis pointed along the [001] direction compared to the c/a < 1 structure with spin

quantization axis pointed along the [110] direction by about 10 meV/f.u.

Interestingly, we find that while c/a <1 is favored with the spin quantization axis pointed along the

[110] direction, beyond a critical value of c/a, which turns out to be 1.016, c/a > 1 is favored with

the spin quantization axis pointed along the [001] direction. In addition to this, the c/a > 1 structure

does contain elongated FeO4 tetrahedral units and compressed VO6 octahedral units, as shown in the

inset of Fig. 7.8, similar to experimental observation. This leads to a situation where the single-

ion anisotropy influences the shape of the solid. This kind of effect has been observed recently in

rare-earth-based magnetic shape memory (MSM)materials like RCu2 (R=rare earth)[15]. There the

single-ion anisotropy-driven effect is operative even in the paramagnetic phase. Therefore we except

this phenomenon to be operative for the HT-T phase of FeV2O4. In our calculations, the single-ion

anisotropy at the Fe site in FeCr2S4, is found to be in plane while that of the V site in MnV2O4 is found



7.4 Results and Discussions 108

0.99 1 1.01 1.02 1.03

c/a ratio

-0.04

-0.02

0

0.02

E
n

er
g

y
 (

eV
)

3.149 A
0

3.
24

7 
A

0

2.027 A
0

2.046 A
0

3.200 A0

3.
18

9 
A

0

2.022 A

2.053 A

0

0

Figure 7.8 The difference of GGA + U + SO energies, with spin quantization axis pointed
along [110] and [001], plotted for various c/a ratios. The VO6 and FeO4 units of the optimized
structures for c/a = 0.99 and c/a = 1.02 are shown in the unhatched and hatched regions,
respectively.

to be out of plane. The interplay of the single-ion anisotropies of Fe and V, which gets influenced by the

magnetic exchange between Fe and V below Tc, leads to change in the overall spin quantization axis

from in plane to out of plane in moving from HT to LT and subsequent change in the shape. The change

of structure therefore is caused by the change in the direction of magnetic anisotropy from in plane to

out of plane, helped by the setting up of magnetic exchange between Fe and V, introducing a somewhat

different mechanism of magnetostriction than in commonly known examples. It is worth to mention

that the single-ion anisotropy-driven rare-earth MSM materials have been reported in literature[15] to

exhibit giant magnetostrain of the order of 1%. Interestingly a similar effect has been also reported for

FeV2O4[7].
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7.5 Conclusion

Using DFT calculations we have investigated the orbital ordering in FeV2O4, which contains both

orbitally active A and B sites. usually the spinel compounds with single site which posses orbital

degree of freedom, exhibits single tetragonal phase. In contrast to those compounds, this compound is

reported to show two tetragonal phases, one compressed at high temperature and another elongated at

low temperature. We find that the orbital ordering at the Fe site is a ferro-orbital ordering of the x2−y2

kind at high temperature and of the 3z2− r2 kind at low temperature. On the other hand, at the V site

it forms orbitally ordered chains driven by staggered trigonal distortion. We further find that the spin

quantization axis pointed along the [110] direction is favored for compressed tetragonal shapes,while

beyond a critical value of c/a with elongated tetragonal shape the spin quantization axis pointed along

the [001] direction is favored. The switching of overall magnetocrystalline anistropy from out of plane

to in plane below Tc therefore causes a change in the shape of the tetragonal unit cell.
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Chapter 8

Conclusion and scope for future study

The aim of this thesis was to study of microscopic origin of many exciting and intriguing physical

properties of different spinel compounds via first-principles calculations. In chapter 3-7, we have con-

sidered five different spinel compounds, which exhibit different interesting properties, due to the orbital

activity of either of A-site or B-site or both ion. In each chapter, the individual summary of results and

discussions have been presented at the end. In this chapter we shall summarize the important results

that emerge out from our calculations on each of the five spinel compounds, namely MnV2O4, FeCr2S4,

FeSc2S4, CuIr2S4 and FeV2O4.

8.1 Conclusion

MnV2O4 : The nature of the orbital ordering in MnV2O4 is closely associated with the structural tran-

sition exhibited by this compound. The geometry optimization calculation shows a strong influence of

correlation effects in the choice of the correct low temperature structure of this compound. The orbital

ordering at V site follow the site symmetry of vanadium which is four-fold rotation times inversion to

give rise to orbital chains with orbitals rotated with respect to each other both within and between the

chains. V-V magnetic exchange has been computed which are in good agreement with experimental

results and this provides an explanation of the controversy between antiferro-orbital ordering versus

112
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the strong exchange between the orbital chains [1]. We further show that our proposed orbital ordering

is capable of predicting correctly the non-collinear spin structure as observed experimentally[2].

FeCr2S4 : Our study shows that low temperature insulating state of FeCr2S4 is driven by spin-orbit

coupling operative within Fe e states which gets renormalized in presence of Coulomb correlation. This

adds FeCr2S4 to the list of compounds exhibiting Coulomb enhanced spin-orbit coupling[3, 4]. The

possible role of low-temperature structural distortion of this sulphide spinel has been explored. Our

total-energy calculation shows tendency of both S and Cr movements in the low temperature phase of

FeCr2S4. Comparison of calculated reflectivity spectrum with experimentally measured data [5] shows

improved agreement in the mid infra-red regime upon inclusion of the structural distortion.

FeSc2S4 : FeSc2S4 and FeCr2S4, these two spinel compounds are exactly same in their chemical

composition and structure except the presence of different chemical elements at the B-site. Neverthe-

less, they behave very differently. Our study reveals that this difference in behaviour originates from

the difference in the hybridization between Fe d states and B (B=Cr/Sc) d states and S p states. This not

only affects the magnitude of magnetic exchanges but also the relative importance of different magnetic

exchanges. Moreover, it turns out that the J’s are antiferromagnetic for the Sc systems and ferromag-

netic for the Cr system. This leads to important frustration effects in the Sc compound which are absent

in the Cr compound [6].

CuIr2S4 : There exist two different school of thoughts regarding the mechanism of metal to insulator

transition of CuIr2S4 at low temperature. Croft et. al. [7] has explained it in terms of formation

of correlated spin singlet dimers. There exists an alternative explanation of this metal to insulator

transition, proposed by Khomskii and Mizokawa,[8] in terms of the orbitally driven Peierls state. Our

first-principles study finds that correlation has very less effect on this metal to insulator transition

observed in this spinel compound. The transition from high temperature to low temperature crystal

structure with complex ordering pattern, therefore, may be rationalized in terms of formation of one-

dimensional bands which gives rise to an orbitally driven Peierls state.
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FeV2O4 : FeV2O4, the last one of the five spinel compounds we have studied, is special in the sense

that it posses orbitally active ion at both A-site and B-site. Previously we have studied spinel com-

pounds with orbitally active ion at either B-site (MnV2O4) or A-site (FeCr2S4). In addition, this com-

pound is reported to show two tetragonal phases, one compressed at high temperature and another

elongated at low temperature. We find that the orbital ordering at the Fe site is a ferro-orbital ordering

of the x2− y2 kind at high temperature and of the 3z2− r2 kind at low temperature. On the other hand,

at the V site it forms orbitally ordered chains driven by staggered trigonal distortion, very similar to

what we have seen in case on MnV2O4. We find that the single-ion anisotropy effect with hard and

easy c axis favours the compressed and elongated tetrahedral shapes, which gives rise to magnetocrys-

talline anisotropy-dependent shape changes, similar to that reported in the context of rare-earth-based

magnetic shape memory alloys [9].

8.2 Scope for future work

Spinel compounds exhibiting many fascinating and intriguing properties, form an active field of re-

search in material science for the last few decades. Microscopic understanding of these complex phe-

nomena, involving several degrees of freedom, not only shed light on the underlying physics, but also

helps in search for new materials with desired functional properties. In this present thesis, we have

studied few of the relevant compounds, out of the vast field of spinel compounds. This dissertation

covers very little, yet important part of this vast field. In all reality, this is just touching the tip of

the iceberg. There are few issues concerning the spinel compounds we have studied which can be

taken up for further studies. Here we list few of such possibilities which can be considered as a future

continuation of the present study.

• In our analysis of comparative study of FeCr2S4 and FeSc2S4, we have not considered the effect

of Jahn-Teller (JT) interactions. It should be mentioned that crystallographically no signature

for static JT order has been found in these systems. In spite of that there could be dynamic JT

effects. This could be a interesting topic for future work.
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• While estimating the band gap of low temperature structure of CuIr2S4, it has been seen that

gap value is sensitive on the structural details. Due to the low symmetry and large unit cell

of CuIr2S4 at low temperature, structural optimization was hindered. With the advancement of

computer power, structural optimization can be taken up as a future project.

• Many of interesting properties of spinel compound have been studied through model calculations,

which can provide a qualitative understanding of those complex phenomena in a semi-classical

approach. For example, the metal-insulator transitions exhibited by a number of spinel com-

pounds with partially filled t2g orbitals at B-site, can be explained as orbitally driven Peierls

instabilities. The possibility of formation of such orbitally driven states has been studied within

a simplified theoretical model, a two-dimensional checker-board lattice† with two orbitals per

atomic site[10]. Orbital ordering and inter-atom electron-phonon interactions have been treated

self-consistently within a semi-classical approximation, and onsite intra-orbital and inter-orbital

electron-electron interactions are treated at the Hartree-Fock level. A stable, orbitally induced

Peierls bond-dimerized state for carrier concentration of one electron per atom has been found.

The Peierls bond distortion pattern continues to be period two bond dimerization even when the

charge density in the orbitals forming the one-dimensional band is significantly smaller than 1.

Interestingly, it has been found that for carrier density of half an electron per atom the Peierls

instability is absent within one-electron theory as well as mean-field theory of electron-electron

interactions, even for nearly complete orbital ordering. Similar kind of calculation can be carried

out to model the orbital ordering of FeV2O4, where both A and B site contains orbitally active

ion.

†Projection of B-site only sub-lattice of spinel compound, on to either of crystallographic planes gives rise to checker-

board pattern. See Fig. 1.2
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